World Library  
Flag as Inappropriate
Email this Article

Rhombic triacontahedron

Article Id: WHEBN0000665025
Reproduction Date:

Title: Rhombic triacontahedron  
Author: World Heritage Encyclopedia
Language: English
Subject: Icosidodecahedron, Rhombic icosahedron, Rhombic dodecahedron, Chamfer (geometry), Disdyakis triacontahedron
Collection: Catalan Solids, Quasiregular Polyhedra, Zonohedra
Publisher: World Heritage Encyclopedia

Rhombic triacontahedron

Rhombic triacontahedron

(Click here for rotating model)
Type Catalan solid
Coxeter diagram
Conway notation jD
Face type V3.5.3.5

Faces 30
Edges 60
Vertices 32
Vertices by type 20{3}+12{5}
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 144°
Properties convex, face-transitive isohedral, isotoxal, zonohedron

(dual polyhedron)
Rhombic triacontahedron Net

In geometry, the rhombic triacontahedron is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

A face of the rhombic triacontahedron. The lengths
of the diagonals are in the golden ratio.

The ratio of the long diagonal to the short diagonal of each face is exactly equal to the golden ratio, φ, so that the acute angles on each face measure 2 tan−1(1/φ) = tan−1(2), or approximately 63.43°. A rhombus so obtained is called a golden rhombus.

Being the dual of an Archimedean solid, the rhombic triacontahedron is face-transitive, meaning the symmetry group of the solid acts transitively on the set of faces. This means that for any two faces, A and B, there is a rotation or reflection of the solid that leaves it occupying the same region of space while moving face A to face B.

The rhombic triacontahedron is somewhat special in being one of the nine edge-transitive convex polyhedra, the others being the five Platonic solids, the cuboctahedron, the icosidodecahedron, and the rhombic dodecahedron.

The rhombic triacontahedron is also interesting in that its vertices include the arrangement of four Platonic solids. It contains ten tetrahedra, five cubes, an icosahedron and a dodecahedron.


  • Dimensions 1
  • Dissection 2
  • Uses of rhombic triacontahedra 3
  • Orthogonal projections 4
    • Stellations 4.1
  • Related polyhedra 5
  • See also 6
  • References 7
  • External links 8


If the edge length of a rhombic triacontahedron is a, surface area, volume, the radius of an inscribed sphere (tangent to each of the rhombic triacontahedron's faces) and midradius, which touches the middle of each edge are:[1]

S = a^2 \cdot 12\sqrt{5} \approx 26.8328 \cdot a^2

V = a^3 \cdot 4\sqrt{5+2\sqrt{5}} \approx 12.3107 \cdot a^3

r_i = a \cdot \frac{\varphi^2}{\sqrt{1 + \varphi^2}} = a \cdot \sqrt{1 + \frac{2}{\sqrt{5}}} \approx 1.37638 \cdot a

r_m = a \cdot \left(1+\frac{1}{\sqrt5{}}\right) \approx 1.44721 \cdot a

where φ is the golden ratio.

The plane of each face is perpendicular to the center of the rhombic triacontahedron, and is located at the same distance (short diagonals belong only to the edges of the inscribed regular dodecahedron, while long diagonals are included only in edges of the inscribed icosahedron). Using one of the three orthogonal golden rectangles drawn into the inscribed icosahedron we can easily deduce the distance between the center of the solid and the center of its rhombic face.


The rhombic triacontahedron can be dissected into 20 golden rhombohedra, 10 acute ones and 10 flat ones.[2]

Uses of rhombic triacontahedra

Danish designer Holger Strøm used the rhombic triacontahedron as a basis for the design of his buildable lamp IQ-light. (IQ for "Interlocking Quadrilaterals")

An example of the use of a rhombic triacontahedron in the design of a lamp. IQ stands for “Interlocking Quadrilaterals”.

Woodworker Jane Kostick builds boxes in the shape of a rhombic triacontahedron.[3] The simple construction is based on the less than obvious relationship between the rhombic triacontahedron and the cube.

Roger von Oech's "Ball of Whacks" comes in the shape of a rhombic triacontahedron.

In some roleplaying games, and for elementary school uses, the rhombic triacontahedron is used as the "d30" thirty-sided die.

Orthogonal projections

The rhombic triacontahedron has three symmetry positions, two centered on vertices, and one mid-edge.

Orthogonal projections
[2] [6] [10]


Rhombic hexecontahedron

The rhombic triacontahedron has over 227 stellations.[4][5]

Related polyhedra

Spherical rhombic triacontahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3. V3.4.5.4 V4.6.10 V3.

This polyhedron is a part of a sequence of rhombic polyhedra and tilings with [n,3] Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are also rectangles.

Symmetry mutations of dual quasiregular tilings: V(3.n)2
Spherical Euclidean Hyperbolic
*n32 *332 *432 *532 *632 *732 *832... *∞32
Conf. V(3.3)2 V(3.4)2 V(3.5)2 V(3.6)2 V(3.7)2 V(3.8)2 V(3.∞)2

The rhombic triacontahedron forms the convex hull of one projection of a 6-cube to 3 dimensions.

A rhombic triacontahedron with an inscribed tetrahedron (red) and cube (yellow).
(Click here for rotating model)
A rhombic triacontahedron with an inscribed dodecahedron (blue) and icosahedron (purple).
(Click here for rotating model)

The 3D basis vectors [u,v,w] are:
u = (1, φ, 0, -1, φ, 0)
v = (φ, 0, 1, φ, 0, -1)
w = (0, 1, φ, 0, -1, φ)

Shown with inner edges hidden
There are 64 vertices and 192 unit length edges forming pentagonal symmetry along specific axis (as well as hexagonal symmetries on other axis).

See also


  1. ^ Stephen Wolfram, "[3]" from Wolfram Alpha. Retrieved January 7, 2013.
  2. ^
  3. ^ triacontahedron box - KO Sticks LLC
  4. ^ Pawley, G. S. (1975). "The 227 triacontahedra". Geometriae Dedicata (Kluwer Academic Publishers) 4 (2-4): 221–232.  
  5. ^ Messer, P. W. (1995). "Stellations of the Rhombic Triacontahedron and Beyond". Structural Topology 21: 25–46. 
  • (Section 3-9)  
  • (The thirteen semiregular convex polyhedra and their duals, Page 22, Rhombic triacontahedron)  
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [4] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 285, Rhombic triacontahedron )

External links

  • Eric W. Weisstein, Rhombic triacontahedron (Catalan solid) at MathWorld
  • Rhombic Triacontrahedron – Interactive Polyhedron Model
  • Virtual Reality Polyhedra – The Encyclopedia of Polyhedra
  • Stellations of Rhombic Triacontahedron
  • EarthStar globe – Rhombic Triacontahedral map projection
  • IQ-light–Danish designer Holger Strøm's lamp
  • Make your own
  • a wooden construction of a rhombic triacontahedron box – by woodworker Jane Kostick
  • 120 Rhombic Triacontahedra, 30+12 Rhombic Triacontahedra, and 12 Rhombic Triacontahedra by Sándor Kabai, The Wolfram Demonstrations Project
  • A viper drawn on a rhombic triacontahedron.
  • Dissection of the rhombic triacontahedron
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.