Secretory Pathway Ca²⁺ ATPase

SPCA, or Secretory Pathway Ca2+-ATPase, is a calcium ATPase-type P-ATPase encoded for by the genes ATP2C1 and ATP2C2.


SPCA is found primarily in the membranes of the golgi apparatus in increasing concentrations from the cis- to the trans-golgi compartments. Following a calcium spike, SPCA proteins are responsible for transporting Ca2+ ions from the cytosol to the lumen of the golgi, thus lowering the cytoplasmic concentrations of Ca2+ to resting levels.

SPCA is also able to transport Mn2+ ions into the golgi with high affinity, an ability that the related Ca2+-ATPase, SERCA, does not possess. Since Mn2+ ions are not used for signalling like Ca2+ ions are, the main reason for transporting them out of the cytosol is to prevent manganese toxicity.[1]

The removal of these ions from the cytosol can also be looked upon as supplying the golgi apparatus and thus the entire secretory pathway with these ions. Several proteins within the pathway require either Ca2+ ions, Mn2+ ions, or divalent ions to function as metal cofactors, such as aminopeptidase P,[2] Proprotein convertases[3] and sulfotransferases.[4]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.