World Library  
Flag as Inappropriate
Email this Article
 

Soil conditioner

A soil conditioner is a product which is added to

  1. ^ "Glossary of Soil Science Terms".  
  2. ^ "Soil Conditioners". Retrieved May 10, 2012. 
  3. ^ "Choosing a Soil Amendment". Retrieved May 10, 2012. 
  4. ^ "Natural Fertilizers and Soil Amendments". Retrieved May 10, 2012. 
  5. ^ "Soil Compaction: Causes, Effects, and Control". Retrieved May 10, 2012. 
  6. ^ "Soil Amendments and Fertilizers". Retrieved May 10, 2012. 
  7. ^ "Fundamentals of Soil Cation Exchange Capacity (CEC)". Retrieved May 10, 2012. 
  8. ^ "What is Soil Conditioner?". Retrieved February 18, 2013. 
  9. ^ "Improving Your Soil". Retrieved May 10, 2012. 
  10. ^ "Producing Garden Vegetables with Organic Soil Amendments". Retrieved May 10, 2012. 
  11. ^ "Protecting Water Quality from Agricultural Runoff". Retrieved May 10, 2012. 

References

Related lists


See also

While adding a soil conditioner to crops or a garden can seem like a great way to get healthier plants, over-application of some amendments can cause ecological problems. For instance, salts, nitrogen, metals and other nutrients that are present in many soil amendments are not productive when added in excess, and can actually be detrimental to plant health. (See for example Fertilizer burn.) Runoff of excess nutrients into waterways can also occur, which is harmful for the environment.[11]

Ecological concerns

Soil conditioners may be applied in a number of ways. Some are worked into the soil with a tiller before planting. Others are applied after planting, or periodically during the growing season. Soil testing should be performed prior to applying a soil conditioner to learn more about the composition and structure of the soil. This testing will determine which conditioners will be more appropriate for the conditions.[10]

Application

Soil conditioners may be used to improve water retention in dry, coarse soils which are not holding water well. The addition of organic material for instance can greatly improve the water retention abilities of sandy soils and they can be added to adjust the pH of the soil to meet the needs of specific plants or to make highly acidic or alkaline soils more usable.[9] The possibility of using other materials to assume the role of composts and clays in improving the soil was investigated on a scientific basis earlier in the 20th century, and the term soil conditioning was coined. The criteria by which such materials are judged most often remains their cost effectiveness, their ability to increase soil moisture for longer periods, stimulate microbiological activity, increase nutrient levels and improve plant survival rates. The first synthetic soil conditioners were introduced in the 1950s, when the chemical hydrolysed polyacrylonitrile was the most used. Because of their ability to absorb several hundred times their own weight in water, polyacrylamides and polymethacrylates (also known as hydroabsorbent polymers, superabsorbent polymers or hydrogels) were tested in agriculture, horticulture and landscaping beginning in the 1960s. Interest disappeared when experiments proved them to be phytotoxic due to their high acrylamide monomer residue. Although manufacturing advances later brought the monomer concentration down below the toxic level, scientific literature shows few successes in utilizing these polymers for increasing plant quality or survival. The appearance of a new generation of potentially effective tools in the early 1980s, including hydroabsorbent polymers and copolymers from the propenamide and propenamide-propenoate families opened new perspectives.

Water retention

Soil amendments can also greatly increase the cation exchange capacity of soils. Soils act as the storehouses of plant nutrients. The relative ability of soils to store one particular group of nutrients, the cations, is referred to as cation exchange capacity or CEC. The most common soil cations are: calcium, magnesium, potassium, ammonium, hydrogen, and sodium. The total number of cations a soil can hold, its total negative charge, is the soil's cation exchange capacity. The higher the CEC, the higher the negative charge and the more cations that can be held and exchanged with plant roots, providing them with the nutrition they require.[7][8]

Cation exchange

For centuries people have been adding things to poor soils to improve their ability to support healthy plant growth. Some of these materials, such as compost, clay and peat, are still used extensively today. Many soil amendments also add nutrients such as carbon and nitrogen, as well as beneficial bacteria. Additional nutrients, such as calcium, magnesium and phosphorus, may be augmented by amendments as well. This enriches the soil, allowing plants to grow bigger and stronger.[6]

Soil nutrients

The most common use of soil conditioners is to improve soil structure. Soils tend to become compacted over time. Soil compaction impedes root growth, decreasing the ability of plants to take up nutrients and water. Soil conditioners can add more loft and texture to keep the soil loose.[5]

Soil structure

Purpose

[4] Many soil conditioners come in the form of

A wide variety of materials have been described as soil conditioners due to their ability to improve soil quality. Some examples include: biochar, bone meal, peat, coffee grounds, compost, coir, manure, straw, vermiculite, sulfur, lime, blood meal, compost tea, hydroabsorbant polymers and sphagnum moss.[3]

Composition

Contents

  • Composition 1
  • Purpose 2
    • Soil structure 2.1
    • Soil nutrients 2.2
    • Cation exchange 2.3
    • Water retention 2.4
  • Application 3
  • Ecological concerns 4
  • See also 5
    • Related lists 5.1
  • References 6

[2] Soil conditioners can be used to improve poor soils, or to rebuild soils which have been damaged by improper management. They can make poor soils more usable, and can be used to maintain soils in peak condition.[1]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.