World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000028464
Reproduction Date:

Title: Super-Kamiokande  
Author: World Heritage Encyclopedia
Language: English
Subject: K2K experiment, Sudbury Neutrino Observatory, MINOS+, Mikheyev–Smirnov–Wolfenstein effect, Physics beyond the Standard Model
Publisher: World Heritage Encyclopedia


Super-Kamiokande (full name: Super-Kamioka Neutrino Detection Experiment, abbreviated to Super-K or SK) is a neutrino observatory located under Mount Kamioka near the city of Hida, Gifu Prefecture, Japan. The observatory was designed to search for proton decay, study solar and atmospheric neutrinos, and keep watch for supernovae in the Milky Way Galaxy.


The Super-K is located 1,000 m (3,300 ft) underground in the Mozumi Mine in Hida's Kamioka area. It consists of a cylindrical stainless steel tank that is 41.4 m (136 ft) tall and 39.3 m (129 ft) in diameter holding 50,000 tons of ultra-pure water. The tank volume is divided by a stainless steel superstructure into an inner detector (ID) region that is 33.8 m (111 ft) in diameter and 36.2 m (119 ft) in height and outer detector (OD) which consists of the remaining tank volume. Mounted on the superstructure are 11,146 photomultiplier tubes (PMT) 50 cm (20 in) in diameter that face the ID and 1,885 20 cm (8 in) PMTs that face the OD. There is a Tyvek and blacksheet barrier attached to the superstructure that optically separates the ID and OD.

A neutrino interaction with the electrons or nuclei of water can produce a charged particle that moves faster than the speed of light in water (not to be confused with exceeding the speed of light in a vacuum). This creates a cone of light known as Cherenkov radiation, which is the optical equivalent to a sonic boom. The Cherenkov light is projected as a ring on the wall of the detector and recorded by the PMTs. Using the timing and charge information recorded by each PMT, the interaction vertex, ring direction and flavor of the incoming neutrino is determined. From the sharpness of the edge of the ring the type of particle can be inferred. The multiple scattering of electrons is large, so electromagnetic showers produce fuzzy rings. Highly relativistic muons, in contrast, travel almost straight through the detector and produce rings with sharp edges.


Construction of the predecessor of the present Kamioka Observatory, the Institute for Cosmic Ray Research, University of Tokyo began in 1982 and was completed in April, 1983. The purpose of the observatory was to detect whether proton decay exists, one of the most fundamental questions of elementary particle physics.[2][3][4][5][6]

The detector, named KamiokaNDE for Kamioka Nucleon Decay Experiment, was a tank 16.0 m (52 ft) in height and 15.6 m (51.2 ft) in width, containing 3,048 metric tons (3,000 tons) of pure water and about 1,000 photomultiplier tubes (PMTs) attached to its inner surface. The detector was upgraded, starting in 1985, to allow it to observe solar neutrinos. As a result, the detector (KamiokaNDE-II) had become sensitive enough to detect neutrinos from SN 1987A, a supernova which was observed in the Large Magellanic Cloud in February 1987, and to observe solar neutrinos in 1988. The ability of the Kamiokande experiment to observe the direction of electrons produced in solar neutrino interactions allowed experimenters to directly demonstrate for the first time that the sun was a source of neutrinos.

Despite successes in neutrino astronomy and neutrino astrophysics, Kamiokande did not achieve its primary goal, the detection of proton decay. Higher sensitivity was also necessary to obtain high statistical confidence in its results. This led to the construction of Super-Kamiokande, with fifteen times the water and ten times as many PMTs as Kamiokande. Super-Kamiokande started operation in 1996.

The Super-Kamiokande Collaboration announced the first evidence of neutrino oscillation in 1998.[7] This was the first experimental observation supporting the theory that the neutrino has non-zero mass, a possibility that theorists had speculated about for years.

On November 12, 2001, about 6,600 of the photomultiplier tubes (costing about $3000 each[8]) in the Super-Kamiokande detector imploded, apparently in a chain reaction or cascading failure, as the shock wave from the concussion of each imploding tube cracked its neighbours. The detector was partially restored by redistributing the photomultiplier tubes which did not implode, and by adding protective acrylic shells that are hoped will prevent another chain reaction from recurring (Super-Kamiokande-II).

In July 2005, preparations began to restore the detector to its original form by reinstalling about 6,000 PMTs. The work was completed in June 2006, whereupon the detector was renamed Super-Kamiokande-III. This phase of the experiment collected data from October 2006 till August 2008. At that time, significant upgrades were made to the electronics. After the upgrade, the new phase of the experiment has been referred to as Super-Kamiokande-IV. SK-IV continues to run*, collecting data on various natural sources of neutrinos, as well as acting as the far detector for the Tokai-to-Kamioka (T2K) long baseline neutrino oscillation experiment.


SK has set limits on proton lifetime and other rare decays and neutrino properties. SK set a lower bound on protons decaying to kaons of 5.9 × 1033 yr[9]

In popular culture

Super-Kamiokande is the subject of German photographer Andreas Gursky's 2007 image, Kamiokande.[10] The detector was a topic in the television series Cosmos: A Spacetime Odyssey.

See also


  1. ^ S. Fukuda; et al. (April 2003), "The Super-Kamiokande detector", Nuclear Instruments and Methods in Physics Research A501 (2–3): 418–462,  
  2. ^ The official Super-Kamiokande home page
  3. ^ American Super-K home page
  4. ^ Pictures and illustrations
  5. ^ Official report on the accident (in PDF format)
  6. ^ Logbook entry of first neutrinos seen at Super-K generated at KEK
  7. ^ Fukuda, Y., et al. (1998). "Evidence for oscillation of atmospheric neutrinos". Physical Review Letters 81 (8): 1562–1567.  
  8. ^ Accident grounds neutrino lab
  9. ^ "Search for proton decay via p → νKþ using 260 kiloton · year data of Super-Kamiokande". PHYSICAL REVIEW D 90, 072005. 14 Oct 2014. 
  10. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.