World Library  
Flag as Inappropriate
Email this Article

Symmetry operation

Article Id: WHEBN0010087606
Reproduction Date:

Title: Symmetry operation  
Author: World Heritage Encyclopedia
Language: English
Subject: List of character tables for chemically important 3D point groups, Physical chemistry
Publisher: World Heritage Encyclopedia

Symmetry operation

In the context of molecular symmetry, a symmetry operation is a permutation of atoms such that the molecule or crystal is transformed into a state indistinguishable from the starting state. Two basic facts follow from this definition, which emphasize its usefulness.

  1. Physical properties must be invariant with respect to symmetry operations.
  2. Symmetry operations can be collected together in groups which are isomorphous to permutation groups.

Wavefunctions need not be invariant, because the operation can multiply them by a phase or mix states within a degenerate representation, without affecting any physical property.


Proper rotation operations

These are denoted by Cnm and are rotations of 360°/n, performed m times. The superscript m is omitted if it is equal to one.

C1, rotation by 360°, is called the Identity operation and is denoted by E or I.

Cnn, n rotations 360°/n is also an Identity operation.

Improper rotation operations

These are denoted by Snm and are rotations of 360°/n followed by reflection in a plane perpendicular to the rotation axis.

S1 is usually denoted as σ, a reflection operation about a mirror plane.

S2 is usually denoted as i, an inversion operation about an inversion centre.

When n is an even number Snn = E, but when n is odd Sn2n = E.

Rotation axes, mirror planes and inversion centres are symmetry elements, not operations. The rotation axis of highest order is known as the principal rotation axis. It is conventional to set the Cartesian z axis of the molecule to contain the principal rotation axis.


Dichloromethane, CH2Cl2. There is a C2 rotation axis which passes through the carbon atom and the midpoints between the two hydrogen atoms and the two chlorine atoms. Define the z axis as co-linear with the C2 axis, the xz plane as containing CH2 and the yz plane as containing CCl2. A C2 rotation operation permutes the two hydrogen atoms and the two chlorine atoms. Reflection in the yz plane permutes the hydrogen atoms while reflection in the xz plane permutes the chlorine atoms. The four symmetry operations E, C2, σ(xz)and σ(yz) form the point group C2v. Note that if any two operations are carried out in succession the result is the same as if a single operation of the group had been performed.
Methane, CH4. In addition to the proper rotations of order 2 and 3 there are three mutually perpendicular S4 axes which pass half-way between the C-H bonds and six mirror planes. Note that S42 = C2.


In crystals screw rotations and/or glide reflections are additionally possible. These are rotations or reflections together with partial translation. The Bravais lattices may be considered as representing translational symmetry operations. Combinations of operations of the crystallographic point groups with the addition symmetry operations produce the 230 crystallographic space groups.


F. A. Cotton Chemical applications of group theory, Wiley, 1962, 1971

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.