World Library  
Flag as Inappropriate
Email this Article

Thrombopoietin

Article Id: WHEBN0000524445
Reproduction Date:

Title: Thrombopoietin  
Author: World Heritage Encyclopedia
Language: English
Subject: Kenneth Kaushansky, Megakaryocyte, Endocrine system, List of MeSH codes (D12.776.395), Idiopathic thrombocytopenic purpura
Collection: Growth Factors
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Thrombopoietin

Thrombopoietin
PDB rendering based on 1v7m.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols  ; MGDF; MKCSF; ML; MPLLG; THCYT1; TPO
External IDs ChEMBL: GeneCards:
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Thrombopoietin (THPO) also known as megakaryocyte growth and development factor (MGDF) is a protein that in humans is encoded by the THPO gene.

Thrombopoietin is a glycoprotein hormone produced by the liver and kidney which regulates the production of platelets. It stimulates the production and differentiation of megakaryocytes, the bone marrow cells that bud off large numbers of platelets.[1]

Megakaryocytopoiesis is the cellular development process that leads to platelet production. The protein encoded by this gene is a humoral growth factor necessary for megakaryocyte proliferation and maturation, as well as for thrombopoiesis. This protein is the ligand for MLP/C_MPL, the product of myeloproliferative leukemia virus oncogene.[2]

Contents

  • Genetics 1
  • Function and regulation 2
  • Therapeutic use 3
  • Discovery 4
  • See also 5
  • References 6
  • Further reading 7
  • External links 8

Genetics

The thrombopoietin gene is located on the long arm of chromosome 3 (q26.3-27). Abnormalities in this gene occur in some hereditary forms of thrombocytosis (high platelet count) and in some cases of leukemia. The first 155 amino acids of the protein share homology with erythropoietin.[3]

Function and regulation

Thrombopoietin is produced in the liver by both parenchymal cells and sinusoidal endothelial cells, in the kidney by proximal convoluted tubule cells. Small amounts are also made by striated muscle and bone marrow stromal cells.[1] In the liver, its production is augmented by interleukin 6 (IL-6).[1] However, the liver and the bone marrow stromal cells are the primary sites of thrombopoietin production.

Thrombopoietin regulates the differentiation of megakaryocytes and platelets, but studies on the removal of the thrombopoietin receptor show that its effects on hematopoiesis are more versatile.[1]

Its negative feedback is different from that of most hormones in endocrinology: The effector regulates the hormone directly. Thrombopoietin is bound to the surface of platelets by the mpl receptor (CD 110) and destroyed, thereby reducing megakaryocyte exposure to the hormone.[1] Therefore, the rising and dropping platelet concentrations regulate the thrombopoietin levels. Low platelets lead a higher degree of thrombopoietin exposure to the undifferentiated bone marrow cells, leading to differentiation into megakaryocytes and further maturation of these cells. On the other hand, high platelet concentrations lead to less availability of thrombopoietin to megakaryocytes.

Therapeutic use

Despite numerous trials, thrombopoietin has not been found to be useful therapeutically. Theoretical uses include the procurement of platelets for donation,[4] and recovery of platelet counts after myelosuppressive chemotherapy.[1]

Trials of a modified recombinant form, megakaryocyte growth and differentiation factor (MGDF), were stopped when healthy volunteers developed autoantibodies to endogenous thrombopoietin and then developed thrombocytopenia.[5] Romiplostim and Eltrombopag, structurally different compounds that stimulate the same pathway, are used instead.[6]

A quadrivalent peptide analogue is being investigated, as well as several small-molecule agents,[1] and several non-peptide ligands of c-Mpl, which act as thrombopoietin analogues.[7][8]

Discovery

Thrombopoietin was cloned by five independent groups in 1994. Before its identification, its function has been hypothesized for as much as 30 years as being linked to the cell surface receptor c-Mpl, and in older publications thrombopoietin is described as c-Mpl ligand (the agent that binds to the c-Mpl molecule). Thrombopoietin is one of the Class I hematopoietic cytokines.[1]

See also

References

  1. ^ a b c d e f g h Kaushansky K (2006). "Lineage-specific hematopoietic growth factors". N. Engl. J. Med. 354 (19): 2034–45.  
  2. ^ "Entrez Gene: THPO thrombopoietin (myeloproliferative leukemia virus oncogene ligand, megakaryocyte growth and development factor)". 
  3. ^ Online 'Mendelian Inheritance in Man' (OMIM) 600044
  4. ^ Kuter DJ, Goodnough LT, Romo J, et al. (2001). "Thrombopoietin therapy increases platelet yields in healthy platelet donors". Blood 98 (5): 1339–45.  
  5. ^ Li J, Yang C, Xia Y, Bertino A, Glaspy J, Roberts M, Kuter DJ (December 2001). "Thrombocytopenia caused by the development of antibodies to thrombopoietin". Blood 98 (12): 3241–8.  
  6. ^ Imbach P, Crowther M (August 2011). "Thrombopoietin-receptor agonists for primary immune thrombocytopenia". N. Engl. J. Med. 365 (8): 734–41.  
  7. ^ Nakamura T, Miyakawa Y, Miyamura A, et al. (2006). "A novel nonpeptidyl human c-Mpl activator stimulates human megakaryopoiesis and thrombopoiesis". Blood 107 (11): 4300–7.  
  8. ^ Jenkins JM, Williams D, Deng Y, et al. (2007). "Phase 1 clinical study of eltrombopag, an oral, nonpeptide thrombopoietin receptor agonist". Blood 109 (11): 4739–41.  

Further reading

  • Hitchcock IS, Kaushansky K (2014). "Thrombopoietin from beginning to end". Br. J. Haematol. 165 (2): 259–68.  
  • Wörmann B (2013). "Clinical indications for thrombopoietin and thrombopoietin-receptor agonists". Transfus Med Hemother 40 (5): 319–25.  
  • Kuter DJ (2013). "The biology of thrombopoietin and thrombopoietin receptor agonists". Int. J. Hematol. 98 (1): 10–23.  
  • Lupia E, Goffi A, Bosco O, Montrucchio G (2012). "Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases". Mediators Inflamm. 2012: 390892.  
  • Liebman HA, Pullarkat V (2011). "Diagnosis and management of immune thrombocytopenia in the era of thrombopoietin mimetics". Hematology Am Soc Hematol Educ Program 2011: 384–90.  

External links

  • Longer summary on thrombopoietin
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.