World Library  
Flag as Inappropriate
Email this Article

Total curvature

Article Id: WHEBN0019172363
Reproduction Date:

Title: Total curvature  
Author: World Heritage Encyclopedia
Language: English
Subject:
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Total curvature

In mathematical study of the differential geometry of curves, the total curvature of an immersed plane curve is the integral of curvature along a curve taken with respect to arc length:

\int_a^b k(s)\,ds.

The total curvature of a closed curve is always an integer multiple of 2π, called the index of the curve, or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point. This map is similar to the Gauss map for surfaces.

Comparison to surfaces

This relationship between a local geometric invariant, the curvature, and a global topological invariant, the index, is characteristic of results in higher-dimensional Riemannian geometry such as the Gauss–Bonnet theorem.

Invariance

According to the Whitney–Graustein theorem, the total curvature is invariant under a regular homotopy of a curve: it is the degree of the Gauss map. However, it is not invariant under homotopy: passing through a kink (cusp) changes the turning number by 1.

By contrast, winding number about a point is invariant under homotopies that do not pass through the point, and changes by 1 if one passes through the point.

Generalizations

A finite generalization is that the exterior angles of a triangle, or more generally any simple polygon, add up to 360° = 2π radians, corresponding to a turning number of 1. More generally, polygonal chains that do not go back on themselves (no 180° angles) have well-defined total curvature, interpreting the curvature as point masses at the angles.

The total curvature of a curve γ in a higher dimensional Euclidean space (equipped with its arclength parameterization) can be obtained by flattening out the tangent developable to γ into a plane, and computing the total curvature of the resulting curve. That is, the total curvature of a curve in n-dimensional space is

\int_a^b \left|\gamma(s)\right|\sgn \kappa_{n-1}(s)\,ds

where κn−1 is last Frenet curvature (the torsion of the curve) and sgn is the signum function.

The minimum total curvature of any three-dimensional curve representing a given knot is an invariant of the knot. This invariant has the value 2π for the unknot, but by the Fary–Milnor theorem it is at least 4π for any other knot.

References

  • (translated by Bruce Hunt)
  • Sullivan, John M. (2007). "Curves of finite total curvature". math.GT]..
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.