World Library  
Flag as Inappropriate
Email this Article

Trifluoroethanol

Article Id: WHEBN0005308303
Reproduction Date:

Title: Trifluoroethanol  
Author: World Heritage Encyclopedia
Language: English
Subject: TFE
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Trifluoroethanol

Template:Chembox ChEMBL
2,2,2-Trifluoroethanol
Error creating thumbnail:
Error creating thumbnail: File seems to be missing:
Identifiers
CAS number 75-89-8 YesY
PubChem 6409
ChemSpider 21106169 N
DrugBank DB03226
ChEBI CHEBI:42330 YesY
Jmol-3D images Image 2
Properties
Molecular formula C2H3F3O
Molar mass 100.04 g/mol
Appearance Colorless liquid
Density 1.325±0.06 g/mL @ 20 °C, 760 Torr liquid
Melting point

−43.5 °C

Boiling point

74.0 °C

Solubility in water Miscible
Solubility in ethanol Miscible
Acidity (pKa) 12.46±0.10 Most Acidic Temp: 25 °C
Viscosity 0.9 cSt @ 37.78 °C
Thermochemistry
Std enthalpy of
formation
ΔfHo298
 ? kJ/mol
Std enthalpy of
combustion
ΔcHo298
-886.6 kJ/mol
Standard molar
entropy
So298
 ? J.K−1.mol−1
Hazards
EU classification Harmful (Xn)
R-phrases R10, R20/21/22, R36/38, R62
S-phrases S16, S36/37/39, S45
NFPA 704
3
2
1
Related compounds
Related alcohols Hexafluoro-2-propanol
Related compounds 1,1,1-Trifluoroethane
Trifluoroacetic acid
 N (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

2,2,2-Trifluoroethanol is the organic compound with the formula CF3CH2OH. Also known as TFE or trifluoroethyl alcohol, this colourless, water-miscible liquid has a smell reminiscent of ethanol. Due to the electronegativity of the trifluoromethyl group, this alcohol exhibits a stronger acidic character compared to ethanol. Thus, TFE forms stable complexes also with heterocycles (e.g. THF or pyridine) through hydrogen bonding.

Synthesis

Trifluoroethanol is produced industrially by hydrogenation or the hydride reduction of derivatives of trifluoroacetic acid, such as the esters or acid chloride.[1]

TFE can also be prepared by hydrogenolysis of compounds of generic formula CF3−CHOH−OR (where R is hydrogen or an alkyl group containing from one to eight carbon atoms), in the presence of a palladium containing catalyst deposited on activated charcoal. As a co-catalyst for this conversion tertiary aliphatic amines like triethylamine are commonly employed.

Uses

Trifluoroethanol is used as a solvent in organic chemistry.[2][3] Oxidations of sulfur compounds using hydrogen peroxide are effectively conducted in TFE.[4] It can also be used as a protein denaturant. In biology TFE is used as a co-solvent in protein folding studies with NMR spectroscopy: this solvent can effectively solubilize both peptides and proteins. Depending upon its concentration, TFE can strongly affect the three-dimensional structure of proteins.

Industrially trifluoroethanol is employed as a solvent for nylon as well as in applications of the pharmaceutical field.

Reactions

Oxidation of trifluoroethanol yields trifluoroacetaldehyde or trifluoroacetic acid. It also serves as a source of the trifluoromethyl group for various chemical reactions (Still-Gennari modification of HWE reaction).

2,2,2-trifluoro-1-vinyloxyethane, an inhaled drug introduced clinically under the tradename Fluromar, features a vinylether of trifluorethanol. This species was prepared by the reaction of trifluoroethanol with acetylene.[1]

Safety

Trifluoroethanol is classified as toxic to blood, the reproductive system, bladder, brain, upper respiratory tract and eyes.[5] Research has shown it to be a testicular toxicant in rats and dogs. [6]

References

  • Halocarbon Fluorochemicals
  • United States Patent number 4,647,706 "Process for the synthesis of 2,2,2-Trifluoroethanol and 1,1,1,3,3,3-Hexafluoroisopropanol"
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.