World Library  
Flag as Inappropriate
Email this Article

Urinary tract

Article Id: WHEBN0000589413
Reproduction Date:

Title: Urinary tract  
Author: World Heritage Encyclopedia
Language: English
Subject: Antepartum haemorrhage, Specialty (medicine), Prostatic congestion
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Urinary tract

Urinary System
1. Human urinary system: 2. Kidney, 3. Renal pelvis, 4. Ureter, 5. Urinary bladder, 6. Urethra. (Left side with frontal section)

7. Adrenal gland
Vessels: 8. Renal artery and vein, 9. Inferior vena cava, 10. Abdominal aorta, 11. Common iliac artery and vein
With transparency: 12. Liver, 13. Large intestine, 14. Pelvis
The order of impurities being excreted from the kidneys: KidneysUretersUrinary BladderUrethra

Latin Systema urinarium

The urinary system, also known as the renal system, consists of the two kidneys, ureters, the bladder, and the urethra. Each kidney consists of millions of functional units called nephrons. The purpose of the renal system is to eliminate wastes from the body, regulate blood volume and pressure, control levels of electrolytes and metabolites, and regulate blood pH. The kidneys have extensive blood supply via the renal arteries which leave the kidneys via the renal vein. Following filtration of blood and further processing, wastes (in the form of urine) exit the kidney via the ureters, tubes made of smooth muscle fibers that propel urine towards the urinary bladder, where it is stored and subsequently expelled from the body by urination. The female and male urinary system are very similar, differing only in the length of the urethra.[1]

Urine is formed in the kidneys through a filtration of blood. The urine is then passed through the ureters to the bladder, where it is stored. During urination (peeing) the urine is passed from the bladder through the urethra to the outside of the body.

About 1-2 litres of urine are produced every day in a healthy human, although this amount may vary according to circumstances such as fluid intake.

Function


There are several functions of the Urinary System:

Urine formation

Average urine production in adult humans is about 1 – 2 L per day, depending on state of hydration, activity level, environmental factors, weight, and the individual's health. Producing too much or too little urine needs medical attention. Polyuria is a condition of excessive production of urine (> 2.5 L/day), oliguria when < 400 mL are produced, and anuria one of < 100 mL per day.

The first step in urine formation is the filtration of blood in the kidneys. In a healthy human the kidney receives between 12 and 30% of cardiac output, but it averages about 20% or about 1.25 L/min.

The basic structural and functional unit of the kidney is the nephron. Its chief function is to regulate the concentration of water and soluble substances like sodium salts by filtering the blood, reabsorbing what is needed and excreting the rest as urine.

In the first part of the nephron, the renal corpuscle blood is being filtrated from the circulatory system into the nephron. A pressure difference between forces the filtrate from the blood across the filtration membrane. The filtrate includes water, small molecules and ions that easily pass through the filtration membrane. However larger molecules such as proteins and blood cells is prevented from passing through the filtration membrane. The amount of filtrate produced every minute is called the glomerular filtration rate or GFR and amounts to a staggering 180 litres per day. About 99% of this filtrate is then reabsorbed as it passes through the nephron and the remaining 1% becomes urine.

The urinary system is regulated by the endocrine system by hormones such as antidiuretic hormone, aldosterone, and parathyroid hormone.[2]

Regulation of concentration and volume

The urinary system is under influence of the blood pressure, nervous system and endocrine system.

Antidiuretic hormone (ADH), is a neurohypophysial hormone found in most mammals. Its two primary functions are to retain water in the body and to constrict blood vessels. Vasopressin regulates the body's retention of water by acting to increase water absorption in the collecting ducts of the kidney nephron.[3] Vasopressin increases water permeability of the kidney's collecting duct and distal convoluted tubule by inducing translocation of aquaporin-CD water channels in the kidney nephron collecting duct plasma membrane.[4]

Urine movement

Urine moves from the nephrones collecting duct system to the minor calyx and then the major calyx before entering the renal pelvis, a funnel-like dilated proximal part of the ureter within the kidney. The major function of the renal pelvis is to act as a funnel for urine flowing to the ureter. From here the urine flows through the ureters to the bladder, where it is stored until urination takes place.

Urination

Urination is the ejection of urine from the urinary bladder through the urethra to the outside of the body. In healthy humans (and many other animals), the process of urination is under voluntary control. In infants, some elderly individuals, and those with neurological injury, urination may occur as an involuntary reflex. In other animals, in addition to expelling waste material, urination can mark territory or express submissiveness. Physiologically, micturition involves coordination between the central, autonomic, and somatic nervous systems. Brain centers that regulate urination include the pontine micturition center, periaqueductal gray, and the cerebral cortex. In male placental mammals, urine is ejected through the penis, and in female placental mammals through the vulva.

Urologic disease

Urologic disease can involve congenital or acquired dysfunction of the urinary system.

Kidney diseases are normally investigated and treated by nephrologists, while the specialty of urology deals with problems in the other organs. Gynecologists may deal with problems of incontinence in women.

Diseases of other bodily systems also have a direct effect on urogenital function. For instance it has been shown that protein released by the kidneys in diabetes mellitus sensitises the kidney to the damaging effects of hypertension.[5]

Diabetes also can have a direct effect in urination due to peripheral neuropathies which occur in some individuals with poorly controlled diabetes.

See also

References

External links

Template:Animal anatomy

cs:Močové cesty

pl:Układ moczowy

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.