World Library  
Flag as Inappropriate
Email this Article

Voltage-gated ion channel

Article Id: WHEBN0001258079
Reproduction Date:

Title: Voltage-gated ion channel  
Author: World Heritage Encyclopedia
Language: English
Subject: Action potential, Ion channel, Transporter Classification Database, CLCNKB, Membrane transport protein
Collection: Electrophysiology, Integral Membrane Proteins, Ion Channels
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Voltage-gated ion channel

Voltage-gated ion channels are a class of transmembrane ion channels that are activated by changes in electrical membrane potential near the channel; these types of ion channels are especially critical in neurons, but are common in many types of cells.

They have a crucial role in excitable neuronal and muscle tissues, allowing a rapid and co-ordinated depolarization in response to triggering voltage change. Found along the axon and at the synapse, voltage-gated ion channels directionally propagate electrical signals.

Contents

  • Structure 1
  • Mechanism 2
  • References 3
  • See also 4
  • External links 5

Structure

They generally are composed of several subunits arranged in such a way that there is a central pore through which ions can travel down their electrochemical gradients. The channels tend to be ion-specific, although similarly sized and charged ions may sometimes travel through them.

Examples include:

Mechanism

From crystallographic structural studies of a potassium channel, assuming that this structure remains intact in the corresponding plasma membrane, it is possible to surmise that when a potential difference is introduced over the membrane, the associated electric field induces a conformational change in the potassium channel. The conformational change distorts the shape of the channel proteins sufficiently such that the cavity, or channel, opens to admit ion influx or efflux to occur across the membrane, down its electrochemical gradient. This subsequently generates an electric current sufficient to depolarise the cell membrane.

Voltage-gated sodium channels and calcium channels are made up of a single polypeptide with four homologous domains. Each domain contains 6 membrane spanning alpha helices. One of these helices, S4, is the voltage sensing helix.[1] It has many positive charges such that a high positive charge outside the cell repels the helix, keeping the channel in its closed state. Depolarization of the cell interior causes the helix to move, inducing a conformational change such that ions may flow through the channel (the open state). Potassium channels function in a similar way, with the exception that they are composed of four separate polypeptide chains, each comprising one domain.

The voltage-sensitive protein domain of these channels (the "voltage sensor") generally contains a region composed of S3b and S4 helices, known as the "paddle" due to its shape, which appears to be a conserved sequence, interchangeable across a wide variety of cells and species. A similar voltage sensor paddle has also been found in a family of voltage sensitive phosphatases in various species.[2] Genetic engineering of the paddle region from a species of volcano-dwelling archaebacteria into rat brain potassium channels results in a fully functional ion channel, as long as the whole intact paddle is replaced.[3] This "modularity" allows use of simple and inexpensive model systems to study the function of this region, its role in disease, and pharmaceutical control of its behavior rather than being limited to poorly characterized, expensive, and/or difficult to study preparations.[4]

Although voltage-gated ion channels are typically activated by membrane depolarization, some channels, such as inward-rectifier potassium ion channels, are activated instead by hyperpolarization.

References

  1. ^ Voltage sensor in the voltage gated sodium and potassium channels | PharmaXChange.info
  2. ^ Murata, Y.; Iwasaki, H.; Sasaki, M.; Inaba, K.; Okamura, Y. (2005). "Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor". Nature 435 (7046): 1239–1243.  
  3. ^ Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ (November 2007). "Portability of paddle motif function and pharmacology in voltage sensors". Nature 450 (7168): 370–5.  
  4. ^ Long SB, Tao X, Campbell EB, MacKinnon R (November 2007). "Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment". Nature 450 (7168): 376–82.  

See also

External links

  • IUPHAR-DB Voltage-gated ion channel subunits
  • The IUPHAR Compendium of Voltage-gated Ion Channels 2005
  • Voltage-Dependent Anion Channels at the US National Library of Medicine Medical Subject Headings (MeSH)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.