William B. Shockley

William Shockley
Born William Bradford Shockley Jr.
(1910-02-13)February 13, 1910
London, England,
United Kingdom
Died August 12, 1989(1989-08-12) (aged 79)
Stanford, California,
United States
Nationality American
Institutions Bell Labs
Shockley Semiconductor
Stanford University
Alma mater MIT
Caltech
Doctoral advisor John C. Slater
Known for Point-Contact Transistor and BJT
Shockley diode equation
Notable awards Nobel Prize in Physics (1956)
Comstock Prize in Physics (1953)
IEEE Medal of Honor (1980)

William Bradford Shockley Jr. (February 13, 1910 – August 12, 1989) was an American physicist and inventor. Along with John Bardeen and Walter Houser Brattain, Shockley co-invented the transistor, for which all three were awarded the 1956 Nobel Prize in Physics.

Shockley's attempts to commercialize a new transistor design in the 1950s and 1960s led to California's "Silicon Valley" becoming a hotbed of electronics innovation. In his later life, Shockley was a professor at Stanford and became a staunch advocate of eugenics.[1][2]

Biography

Early years

Shockley was born in London, England to American parents, and raised in his family's hometown of Palo Alto, California, from age three.[3] His father, William senior, was a mining engineer who speculated in mines for a living, and spoke eight languages. His mother, Mary, grew up in the American West, graduated from Stanford University, and became the first female US Deputy mining surveyor.[4]

When World War II broke out, Shockley became involved in radar research at the labs in Whippany, New Jersey. In May 1942 he took leave from Bell Labs to become a research director at Columbia University's Anti-Submarine Warfare Operations Group.[5]

In July 1945, the War Department asked Shockley to prepare a report on the question of probable casualties from an invasion of the Japanese mainland. Shockley concluded:

If the study shows that the behavior of nations in all historical cases comparable to Japan's has in fact been invariably consistent with the behavior of the troops in battle, then it means that the Japanese dead and ineffectives at the time of the defeat will exceed the corresponding number for the Germans. In other words, we shall probably have to kill at least 5 to 10 million Japanese. This might cost us between 1.7 and 4 million casualties including 400,000 to 800,000 killed.[6]

This prediction influenced the decision for the atomic bombings of Hiroshima and Nagasaki to force Japan to surrender without an invasion.[7]

The transistor

Shortly after the end of the war in 1945, Bell Labs formed a solid state physics group, led by Shockley and chemist Stanley Morgan, which included John Bardeen, Walter Brattain, physicist Gerald Pearson, chemist Robert Gibney, electronics expert Hilbert Moore, and several technicians. Their assignment was to seek a solid-state alternative to fragile glass vacuum tube amplifiers. Its first attempts were based on Shockley's ideas about using an external electrical field on a semiconductor to affect its conductivity. These experiments failed every time in all sorts of configurations and materials. The group was at a standstill until Bardeen suggested a theory that invoked surface states that prevented the field from penetrating the semiconductor. The group changed its focus to study these surface states and they met almost daily to discuss the work. The rapport of the group was excellent, and ideas were freely exchanged.[8]

By the winter of 1946 they had enough results that Bardeen submitted a paper on the surface states to Physical Review. Brattain started experiments to study the surface states through observations made while shining a bright light on the semiconductor's surface. This led to several more papers (one of them co-authored with Shockley), which estimated the density of the surface states to be more than enough to account for their failed experiments. The pace of the work picked up significantly when they started to surround point contacts between the semiconductor and the conducting wires with electrolytes. Moore built a circuit that allowed them to vary the frequency of the input signal easily. Finally they began to get some evidence of power amplification when Pearson, acting on a suggestion by Shockley, put a voltage on a droplet of glycol borate (a viscous chemical that did not evaporate, commonly used in electrolytic capacitors, and obtained by puncturing an example capacitor with a nail, using a hammer) placed across a P-N junction.[9]


Bell Labs' attorneys soon discovered Shockley's field effect principle had been anticipated and devices based on it patented in 1930 by Julius Lilienfeld, who filed his MESFET-like patent in Canada on October 22, 1925.[10][11] Although the patent appeared "breakable" (it could not work) the patent attorneys based one of its four patent applications only on the Bardeen-Brattain point contact design. Three others (submitted first) covered the electrolyte-based transistors with Bardeen, Gibney and Brattain as the inventors. Shockley's name was not on any of these patent applications. This angered Shockley, who thought his name should also be on the patents because the work was based on his field effect idea. He even made efforts to have the patent written only in his name, and told Bardeen and Brattain of his intentions.[12]

Shockley was incensed, and decided to demonstrate who was the real brains of the operation so he secretly continued his own work to build a different sort of transistor based on junctions instead of point contacts; he expected this kind of design would be more likely to be commercially viable. The point contact transistor, he believed, would prove to be fragile and difficult to manufacture. Shockley was also dissatisfied with certain parts of the explanation for how the point contact transistor worked and conceived of the possibility of minority carrier injection. On February 13, 1948 another team member, John N. Shive, built a point contact transistor with bronze contacts on the front and back of thin wedge of germanium, proving that holes could diffuse through bulk germanium and not just along the surface as previously thought.[13]:153[14]:145 Shive's invention sparked[15] Shockley's invention of the junction transistor.[13]:143 A few months later he invented an entirely new, considerably more robust, type of transistor with a layer or 'sandwich' structure. This structure went on to be used for the vast majority of all transistors into the 1960s, and evolved into the bipolar junction transistor. Shockley later admitted that the workings of the team were "mixture of cooperation and competition." He also admitted that he kept some of own work secret until his "hand was forced" by Shive's 1948 advance.[16] Shockley worked out a rather complete description of what he called the "sandwich" transistor, and a first proof of principle was obtained on April 7, 1949.

This resulted in his invention of the junction transistor, which was announced at a press conference on July 4, 1951.[17]

In 1951, he was elected a member of the National Academy of Sciences (NAS). He was forty-one years old; this was rather young for such an election. Two years later, he was chosen as the recipient of the prestigious Comstock Prize[18] for Physics by the NAS, and was the recipient of many other awards and honors.

The ensuing publicity generated by the "invention of the transistor" often thrust Shockley to the fore, much to the chagrin of Bardeen and Brattain. Bell Labs management, however, consistently presented all three inventors as a team. Though Shockley would correct the record where reporters gave him sole credit for the invention,[19] he eventually infuriated and alienated Bardeen and Brattain, and he essentially blocked the two from working on the junction transistor. Bardeen began pursuing a theory for superconductivity and left Bell Labs in 1951. Brattain refused to work with Shockley further and was assigned to another group. Neither Bardeen nor Brattain had much to do with the development of the transistor beyond the first year after its invention.[20]

Shockley Semiconductor

"His way" could generally be summed up as domineering and increasingly paranoid. In one well-known incident, he claimed that a secretary's cut thumb was the result of a malicious act and he demanded lie detector tests to find the culprit.[21]

After receiving the Nobel Prize in 1956, his ego—outsized to begin with—got better of his genius, as evidenced in his increasingly autocratic, erratic and hard-to-please management style.[22] In late 1957, eight of Shockley's researchers, who would come to be known as the "traitorous eight", resigned after Shockley decided not to continue research into silicon-based semiconductors.[23]

Over the course of 20 years, eight of Shockley’s former employees started 65 new enterprises.[24] Shockley Semiconductor and these companies formed the nucleus of what became Silicon Valley, which revolutionized the world of electronics.

Sidelights

Shockley was popular as speaker, lecturer, and an amateur magician. He once magically produced a bouquet of roses at the end of his address before the American Physical Society. He was also famed in his early years for his elaborate practical jokes.[25] He became an accomplished rock climber, going often to the Shawangunks in the Hudson River Valley, where he pioneered a route across an overhang, known to this day as "Shockley's Ceiling."[9]

Shockley was first to propose a lognormal distribution to model the creation process for scientific research papers.[26] He was an atheist.[27]

Later years

When Shockley was eased out of the directorship of Shockley Semiconductor, he joined Stanford University, where he was appointed the Alexander M. Poniatoff Professor of Engineering and Applied Science.[28]

Statements about populations and genetics

Late in his life, Shockley became intensely interested in questions of race, intelligence, and eugenics. He thought this work was important to the genetic future of the human species, and came to describe it as the most important work of his career, even though expressing such politically unpopular views risked damaging his reputation. When asked why he seemed to take positions associated with both the political right and left, Shockley explained that his goal was "the application of scientific ingenuity to the solution of human problems."[29]

Shockley argued that the higher rate of reproduction among the less intelligent was having a dysgenic effect, and that a drop in average intelligence would ultimately lead to a decline in civilization.[30] Shockley advocated that the scientific community should seriously investigate questions of heredity, intelligence, and demographic trends, and suggest policy changes if he was proven right.[31]

Although Shockley was concerned about dysgenic effects among both blacks and whites, he perceived the situation among blacks as more problematic. According to 1970 US Census, unskilled and skilled whites had on average 3.7 and 2.3 children, respectively, whereas the corresponding numbers for blacks were 5.4 and 1.9.[32]

He donated sperm to the Repository for Germinal Choice, a sperm bank founded by Robert Klark Graham in hopes of spreading humanity's best genes. The bank, called by the media the "Nobel Prize sperm bank," claimed to have three Nobel Prize-winning donors, though Shockley was the only one to publicly acknowledge his donation to the sperm bank. However, Shockley's controversial views brought the Repository for Germinal Choice a degree of notoriety and may have discouraged other Nobel Prize winners from donating sperm.[33]

In 1981 he filed a libel suit against the Atlanta Constitution after a reporter called him a "Hitlerite" and compared his racial views to those of the Nazis. Shockley won the suit but received only $1 in damages.[34][35] Shockley's biographer sums this up as saying that the statement was defamatory, but Shockley's reputation was not worth much by the time the trial reached a verdict.[36]

In his later years Shockley took several precautions to improve his interactions with the media, to little avail. He taped his telephone conversations with reporters, and then sent the transcript to them by registered mail. At one point he toyed with the idea of making them take a simple quiz on his work before discussing the subject with them. His habit of saving all his papers, even laundry lists, provides abundant documentation for researchers on his life.[37]

Edgar G. Epps argued that "William Shockley's position lends itself to racist interpretations".[38] Anthropologist Roger Pearson[39] has defended Shockley, arguing that Shockley’s views were misrepresented in the popular media by journalists who lacked a proper understanding of the topics Shockley wrote about, and that his views were in fact shared by many other scholars who were reluctant to publicly defend him due to fear of being attacked themselves.[40]

Death

He died in 1989 of prostate cancer.[1]

By the time of his death he was almost completely estranged from most of his friends and family, except his wife. His children are reported to have learned of his death only through the print media.[41]

A group of about 30 colleagues, who have met on and off since 1956, met at Stanford in 2002 to reminisce about their time with Shockley and his central role in sparking the information technology revolution, its organizer saying "Shockley is the man who brought silicon to Silicon Valley."[42]

Honors

  • He received the National Medal of Merit for his war work in 1946.[43]
  • He received the Comstock Prize in Physics of the National Academy of Sciences in 1953.[44]
  • He was the first recipient of the Oliver E. Buckley Solid State Physics Prize of the American Physical Society in 1953.
  • Shockley was a co-recipient of the Nobel Prize in physics in 1956, along with Bardeen and Brattain. In his Nobel lecture, he gave full credit to Brattain and Bardeen as the inventors of the point-contact transistor. The three of them, together with wives and guests, had a rather raucous late-night champagne-fueled party to celebrate together.
  • Holley Medal of the American Society of Mechanical Engineers in 1963.
  • He received honorary science doctorates from the University of Pennsylvania, Rutgers University in New Jersey, and Gustavus Adolphus Colleges in Minnesota.
  • Maurice Liebman Memorial Prize from the Institute of Radio Engineers (now the Institute of Electrical and Electronics Engineers (IEEE) in 1980.
  • Shockley was named by Time Magazine as one of the 100 most influential people of the 20th century.
  • In 2011, he was listed at #3 on the Boston Globe's MIT150 list of the top 150 innovators and ideas in the 150 year history of MIT.

Patents

Shockley was granted over ninety US patents. Some notable ones are:

  • US 2502488  Apr. 4, 1950; his first granted patent involving transistors.
  • US 2569347  Sept. 25, 1951; His earliest applied for (June 26, 1948) patent involving transistors.
  • US 2655609  Oct. 13, 1953; Used in computers.
  • US 2787564  Apr. 2, 1957; The diffusion process for implantation of impurities.
  • US 3031275  Apr. 24, 1962; Improvements on process for production of basic materials.
  • US 3053635  Sept. 11, 1962; Exploring other semiconductors.

Bibliography

Prewar scientific articles by Shockley

  • An Electron Microscope for Filaments: Emission and Adsorption by Tungsten Single Crystals, R. P. Johnson and W. Shockley, Phys. Rev. 49, 436 - 440 (1936) 10.1103/PhysRev.49.436
  • Optical Absorption by the Alkali Halides, J. C. Slater and W. Shockley, Phys. Rev. 50, 705 - 719 (1936) 10.1103/PhysRev.50.705
  • Electronic Energy Bands in Sodium Chloride, William Shockley, Phys. Rev. 50, 754 - 759 (1936) 10.1103/PhysRev.50.754
  • The Empty Lattice Test of the Cellular Method in Solids, W. Shockley, Phys. Rev. 52, 866 - 872 (1937) 10.1103/PhysRev.52.866
  • On the Surface States Associated with a Periodic Potential, William Shockley, Phys. Rev. 56, 317 - 323 (1939) 10.1103/PhysRev.56.317
  • The Self-Diffusion of Copper, J. Steigman, W. Shockley and F. C. Nix, Phys. Rev. 56, 13 - 21 (1939) 10.1103/PhysRev.56.13

Books by Shockley

  • Shockley, William – Electrons and holes in semiconductors, with applications to transistor electronics, Krieger (1956) ISBN 0-88275-382-7.
  • Shockley, William and Gong, Walter A – Mechanics Charles E. Merrill, Inc. (1966).
  • Shockley, William and Pearson, Roger – Shockley on Eugenics and Race: The Application of Science to the Solution of Human Problems Scott-Townsend (1992) ISBN 1-878465-03-1.

Books about Shockley

  • Joel N. Shurkin; Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. New York: Palgrave Macmillan (2006) ISBN 1-4039-8815-3
  • Michael Riordan and Lillian Hoddeson; Crystal Fire: The Invention of the Transistor and the Birth of the Information Age. New York: Norton (1997) ISBN 0-393-31851-6 pbk.

References

External links

  • National Academy of Sciences biography
  • Nobel biography
  • Nobel Lecture
  • PBS biography
  • Gordon Moore. Biography of William Shockley Time Magazine
  • Interview with Shockley biographer Joel Shurkin
  • History of the transistor
  • Lessons In Electric Circuits – Bipolar Junction Transistors
  • EncycloBEAMia – Bipolar Junction Transistor
  • Shockley and Bardeen-Brattain patent disputes
  • William Shockley vs. Francis Cress-Welsing (Tony Brown Show, 1974)
  • A Shockley website (shockleytransistor.com) has been established, using the company name, to honor Shockley and those who first processed silicon in Silicon Valley.
  • WorldCat catalog)

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.