World Library  
Flag as Inappropriate
Email this Article

Potassium Channel Blocker

Article Id: WHEBN0018608936
Reproduction Date:

Title: Potassium Channel Blocker  
Author: World Heritage Encyclopedia
Language: English
Subject: Potassium channel opener, Sodium channel blocker, Channel blocker, Neuromodulation, Beta1-adrenergic agonist
Publisher: World Heritage Encyclopedia

Potassium Channel Blocker

Potassium channel blockers are agents which interfere with conduction through potassium channels.


Effect of class III antiarrhythmic agent on cardiac action potential.

Potassium channel blockers used in the treatment of cardiac arrhythmia are classified as class III antiarrhythmic agents.


Class III agents predominantly block the potassium channels, thereby prolonging repolarization.[1] More specifically, their primary effect is on IKr.[2]

Since these agents do not affect the sodium channel, conduction velocity is not decreased. The prolongation of the action potential duration and refractory period, combined with the maintenance of normal conduction velocity, prevent re-entrant arrhythmias. (The re-entrant rhythm is less likely to interact with tissue that has become refractory).

Class III antiarrhythmic agents exhibit reverse use dependent prolongation of the action potential duration (Reverse use-dependence). This means that the refractoriness of the ventricular myocyte increases at lower heart rates. This increases the susceptibility of the myocardium to Early Afterdepolarizations (EADs) at low heart rates. Antiarrhythmic agents that exhibit reverse use-dependence are more efficacious at preventing a tachyarrhythmia than converting someone into normal sinus rhythm. Because of the reverse use-dependence of class III agents, at low heart rates class III antiarrhythmic agents may paradoxically be more arrhythmogenic.

Examples and uses

  • Amiodarone is indicated for the treatment of refractory VT or VF, particularly in the setting of acute ischemia. Amiodarone is also safe to use in individuals with cardiomyopathy and atrial fibrillation, to maintain normal sinus rhythm. Amiodarone prolongation of the action potential is uniform over a wide range of heart rates so this drug does not have reverse use-dependent action. Amiodarone was the first agent described in this class.[3] Amiodarone should only be used to treat adults with life-threatening ventricular arrhythmias when other treatments are ineffective or have not been tolerated.[4]
  • Dofetilide blocks only the rapid K channels; this means that at higher heart rates, when there is increased involvement of the slow K channels, dofetilide has less of an action potential-prolonging effect.

Side effects

These agents include a risk of torsades de pointes.[6]


Sulfonylureas come under the class of ATP-sensitive potassium channel blockers.

Other uses

Dalfampridine, A potassium channel blocker has also been approved for use in the treatment of multiple sclerosis.[7]

See also


  1. ^ Lenz TL, Hilleman DE (July 2000). "Dofetilide, a new class III antiarrhythmic agent". Pharmacotherapy 20 (7): 776–86.  
  2. ^ Riera AR, Uchida AH, Ferreira C, et al. (2008). "Relationship among amiodarone, new class III antiarrhythmics, miscellaneous agents and acquired long QT syndrome". Cardiol J 15 (3): 209–19.  
  3. ^ "Milestones in the Evolution of the Study of Arrhythmias". 
  4. ^ "FDA MedWatch". 
  5. ^ Sahara M, Sagara K, Yamashita T, Iinuma H, Fu LT, Watanabe H (August 2003). "Nifekalant hydrochloride, a novel class III antiarrhythmic agent, suppressed postoperative recurrent ventricular tachycardia in a patient undergoing coronary artery bypass grafting and the Dor approach". Circ. J. 67 (8): 712–4.  
  6. ^ "Introduction: Arrhythmias and Conduction Disorders: Merck Manual Professional". 
  7. ^ Judge SI, Bever CT (July 2006). "Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment". Pharmacol. Ther. 111 (1): 224–59.  

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.