My Account |   | Help

Search Results (87 titles)

Searched over 21.6 Million titles in 3.02 seconds

Algebra (X)

 1|2|3|4|5 Records: 1 - 20 of 87 - Pages:
 Book Id: WPLBN0002828550 Subjects: Non Fiction, Education, Bicodes Collections: Literature, Law, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsThis book has four chapters. In chapter one we just recall the notion of RD codes, MRD codes, circulant rank codes and constant rank codes and describe their properties. In chapter two we introduce few new classes of codes and study some of their properties. In this chapter we introduce the notion of fuzzy RD codes and fuzzy RD bicodes. Rank distance m-codes are introduced in chapter three and the property of m-covering radius is analysed. Chapter four indicates some applications of these new classes of codes.... Excerpt DetailsDEFINITION 1.12: The ‘norm’ of a word v _ VN is defined as the ‘rank’ of v over GF(2) (By considering it as a circulant matrix over GF(2)). We denote the ‘norm’ of v by r(v). We just prove the following theorem. THEOREM 1.2: Suppose ____GF(2N) has the polynomial representation g(x) over GF(2) such that the gcd(g(x), xN +1) has degree N – k, where 0 _ k _ N. Then the ‘norm’ of the word generated by _ is ‘k’. ... Table of Contents DetailsPreface 5 Chapter One BASIC PROPERTIES OF RANK DISTANCE CODES 7 Chapter Two RANK DISTANCE BICODES AND THEIR PROPERTIES 25 Chapter Three RANK DISTANCE m-CODES 77 Chapter Four APPLICATIONS OF RANK DISTANCE m-CODES 131 FURTHER READING 133 INDEX 144 ABOUT THE AUTHORS 150...
 Date: 2013, Volume: 2 Book Id: WPLBN0002828222 Subjects: Non Fiction, Education, Super Vector Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsIn this book authors for the first time introduce the notion of supermatrices of refined labels. Authors prove super row matrix of refined labels form a group under addition. However super row matrix of refined labels do not form a group under product; it only forms a semigroup under multiplication. In this book super column matrix of refined labels and m Å~ n matrix of refined labels are introduced and studied. We mainly study this to introduce to super vector space of refined labels using matrices.... Excerpt DetailsTHEOREM 1.1.1: Let S = {(a1 a2 a3 | a4 a5 | a6 a7 a8 a9 | … | an-1, an) | ai ∈ R; 1 ≤ i ≤ n} be the collection of all super row vectors with same type of partition, S is a group under addition. Infact S is an abelian group of infinite order under addition. The proof is direct and hence left as an exercise to the reader. If the field of reals R in Theorem 1.1.1 is replaced by Q the field of rationals or Z the integers or by the modulo integers Zn, n < ∞ still the conclusion of the theorem 1.1.1 is true. Further the same conclusion holds good if the partitions are changed. S contains only same type of partition. However in case of Zn, S becomes a finite commutative group....
 Book Id: WPLBN0002828454 Subjects: Non Fiction, Education, Algebra Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsThis book has three chapters. In the first chapter the notion of n-vector spaces of type II are introduced. This chapter gives over 50 theorems. Chapter two introduces the notion of n-inner product vector spaces of type II, n-bilinear forms and n-linear functionals. The final chapter suggests over a hundred problems. It is important that the reader should be well versed with not only linear algebra but also n-linear algebras of type I.... Excerpt DetailsIn this chapter we for the first time introduce the notion of n-vector space of type II. These n-vector spaces of type II are different from the n-vector spaces of type I because the n-vector spaces of type I are defined over a field F where as the n-vector spaces of type II are defined over n-fields. Some properties enjoyed by n-vector spaces of type II cannot be enjoyed by n-vector spaces of type I. To this; we for the sake of completeness just recall the definition of n-fields in section one and n-vector spaces of type II are defined in section two and some important properties are enumerated.... Table of Contents DetailsPreface 5 Chapter One n-VECTOR SPACES OF TYPE II AND THEIR PROPERTIES 7 1.1 n-fields 7 1.2 n-vector Spaces of Type II 10 Chapter Two n-INNER PRODUCT SPACES OF TYPE II 161 Chapter Three SUGGESTED PROBLEMS 195 FURTHER READING 221 INDEX 225 ABOUT THE AUTHORS 229...
 Book Id: WPLBN0002828092 Subjects: Non Fiction, Education, Super Interval Matrices Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsIn this book authors for the first time introduce the notion of super interval matrices using the special intervals of the form [0, a], a belongs to Z+ ∪ {0} or Zn or Q+ ∪ {0} or R+ ∪ {0}.... Excerpt DetailsSUPER INTERVAL SEMILINEAR ALGEBRAS In this chapter we for the first time introduce the notion of semilinear algebra of super interval matrices over semifields of type I (super semilinear algebra of type I) and semilinear algebra of super interval matrices over interval semifields of type II (super semilinear algebra of type II) and study their properties and illustrate them with examples. DEFINITION 4.1: Let V be a semivector space of super interval matrices defined over the semifield S of type I. If on V we for every pair of elements x, y ∈ V; x . y is in V where ‘.’ is the product defined on V, then we call V a semilinear algebra of super interval matrices over the semifield S of type I. We will illustrate this situation by some examples. Example 4.1: Let V = {([0, a1] [0, a2] | [0, a3] [0, a4] | [0, a5] [0, a6] | [0,a7]) | ai ∪ Z+ ∪ {0}; 1 ≤ i ≤ 7} be a semivector space of super interval matrices defined over the semifield S = Z+ ∪ {0} of type I. Consider x = ([0, 5] [0, 3] | [0, 9] [0, 1] [0, 2] [0, 8] | [0, 6]) and y =([0, 1] [0, 2] | [0, 3] [0, 5] [0, 3] [0, 1] | [0, 5]) in V. We define the product ‘.’ on V as x.y =... Table of Contents DetailsCONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two INTERVAL SUPERMATRICES 9 Chapter Three SEMIRINGS AND SEMIVECTOR SPACES USING SUPER INTERVAL MATRICES 83 Chapter Four SUPER INTERVAL SEMILINEAR ALGEBRAS 137 Chapter Five SUPER FUZZY INTERVAL MATRICES 203 5.1 Super Fuzzy Interval Matrices 203 5.2 Special Fuzzy Linear Algebras Using Super Fuzzy Interval Matrices 246 Chapter Six APPLICATION OF SUPER INTERVAL MATRICES AND SET LINEAR ALGEBRAS BUILT USING SUPER INTERVAL MATRICES 255 Chapter Seven SUGGESTED PROBLEMS 257 FURTHER READING 281 INDEX 285 ABOUT THE AUTHORS 287...
 Book Id: WPLBN0002828472 Subjects: Non Fiction, Education, Algebra Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsThis book has seven chapters. Chapter one provides several basic notions to make this book self-contained. Chapter two introduces neutrosophic groups and neutrosophic N-groups and gives several examples. The third chapter deals with neutrosophic semigroups and neutrosophic N-semigroups, giving several interesting results. Chapter four introduces neutrosophic loops and neutrosophic N-loops. Chapter five just introduces the concept of neutrosophic groupoids and neutrosophic Ngroupoids. Sixth chapter innovatively gives mixed neutrosophic structures and their duals. The final chapter gives problems for the interested reader to solve. Our main motivation is to attract more researchers towards algebra and its various applications.... Excerpt Details1.1 Groups, N-group and their basic Properties It is a well-known fact that groups are the only algebraic structures with a single binary operation that is mathematically so perfect that an introduction of a richer structure within it is impossible. Now we proceed on to define a group. DEFINITION 1.1.1: A non empty set of elements G is said to form a group if in G there is defined a binary operation, called the product and denoted by '•' such that ... Table of Contents DetailsPreface 5 Chapter One INTRODUCTION 1.1 Groups, N-group and their basic Properties 7 1.2 Semigroups and N-semigroups 11 1.3 Loops and N-loops 12 1.4 Groupoids and N-groupoids 25 1.5 Mixed N-algebraic Structures 32 Chapter Two NEUTROSOPHIC GROUPS AND NEUTROSOPHIC N-GROUPS 2.1 Neutrosophic Groups and their Properties 40 2.2 Neutrosophic Bigroups and their Properties 52 2.3 Neutrosophic N-groups and their Properties 68 Chapter Three NEUTROSOPHIC SEMIGROUPS AND THEIR GENERALIZATIONS 3.1 Neutrosophic Semigroups 81 3.2 Neutrosophic Bisemigroups and their Properties 88 3.3 Neutrosophic N-Semigroup 98 Chapter Four NEUTROSOPHIC LOOPS AND THEIR GENERALIZATIONS 4.1 Neutrosophic loops and their Properties 113 4.2 Neutrosophic Biloops 133 4.3 Neutrosophic N-loop 152 Chapter five NEUTROSOPHIC GROUPOIDS AND THEIR GENERALIZATIONS 5.1 Neutrosophic Groupoids 171 5.2 Neutrosophic Bigroupoids and their generalizations 182 Chapter Six MIXED NEUTROSOPHIC STRUCTURES 187 Chapter Seven PROBLEMS 195 REFERENCE 201 INDEX 207 ABOUT THE AUTHORS 219 ...
 Book Id: WPLBN0002097100 ► Abstract Description Detailsintroduction of neutrosophic theory has put forth a significant concept by giving representation to indeterminates. Uncertainty or indeterminacy happen to be one of the major factors in almost all real-world problems. When uncertainty is modeled we use fuzzy theory and when indeterminacy is involved we use neutrosophic theory. Most of the fuzzy models which deal with the analysis and study of unsupervised data make use of the directed graphs or bipartite graphs. Thus the use of graphs has become inevitable in fuzzy models. The neutrosophic models are fuzzy models that permit the factor of indeterminacy. It also plays a significant role, and utilizes the concept of neutrosophic graphs. Thus neutrosophic graphs and neutrosophic bipartite graphs plays the role of representing the neutrosophic models. Thus to construct the neutrosophic graphs one needs some of the neutrosophic algebraic structures viz. neutrosophic fields, neutrosophic vector spaces and neutrosophic matrices. So we for the first time introduce and study these concepts. As our analysis in this book is application of neutrosophic algebraic structure we found it deem fit t...
 Book Id: WPLBN0002097044 Collections: Math, Literature, Algebra, Authors Community, Mathematics ► Abstract Description DetailsMatrix theory has been one of the most utilised concepts in fuzzy models and neutrosophic models. From solving equations to characterising linear transformations or linear operators, matrices are used. Matrices find their applications in several real models. In fact it is not an exaggeration if one says that matrix theory and linear algebra (i.e. vector spaces) form an inseparable component of each other. The study of bialgebraic structures led to the invention of new notions like birings, Smarandache birings, bivector spaces, linear bialgebra, bigroupoids, bisemigroups, etc. But most of these are abstract algebraic concepts except, the bisemigroup being used in the construction of biautomatons. So we felt it is important to construct nonabstract bistructures which can give itself for more and more lucid applications.... Excerpt DetailsMatrices provide a very powerful tool for dealing with linear models. Bimatrices which we are going to define in this chapter are still a powerful and an advanced tool which can handle over one linear model at a time. Bimatrices will be useful when time bound comparisons are needed in the analysis of the model....
 Book Id: WPLBN0002097644 Subjects: Non-Fiction, Education, Smarandache Collections Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Excerpt DetailsSmarandache notions, which can be undoubtedly characterized as interesting mathematics, has the capacity of being utilized to analyse, study and introduce, naturally, the concepts of several structures by means of extension or identification as a substructure. Several researchers around the world working on Smarandache notions have systematically carried out this study. This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure — for all rings and fields are semirings. The study of this concept is very meagre except for a very few research papers. Now, when we study the Smarandache semirings (S-semiring), we make the richer structure of semifield to be contained in an S-semiring; and this S-semiring is of the first level. To have the second level of S-semirings, we need a still richer structure, viz. field to be a subset in a S-semiring. This is achieved by defining a new notion called the Smarandache mixed direct product. Likewise we also define the Smarandache semif...
 Book Id: WPLBN0002096589 Subjects: Non Fiction, Education, Algebra Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsThe main motivation and desire for writing this book, is the direct appreciation and attraction towards the Smarandache notions in general and Smarandache algebraic structures in particular. The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference....
 Book Id: WPLBN0002828452 Subjects: Non Fiction, Education, Algebra Collections: Math, Literature, Education, Algebra, Authors Community, Mathematics ► Abstract Description DetailsThis book has four chapters. The first chapter just introduces n-group which is essential for the definition of n-vector spaces and n-linear algebras of type I. Chapter two gives the notion of n-vector spaces and several related results which are analogues of the classical linear algebra theorems. In case of n-vector spaces we can define several types of linear transformations. The applications of these algebraic structures are given in Chapter 3. Chapter four gives some problem to make the subject easily understandable.... Excerpt Detailsn-VECTOR SPACES OF TYPE I AND THEIR PROPERTIES In this chapter we introduce the notion of n-vector spaces and describe some of their important properties. Here we define the concept of n-vector spaces over a field which will be known as the type I n-vector spaces or n-vector spaces of type I. Several interesting properties about them are derived in this chapter. DEFINITION 2.1: A n-vector space or a n-linear space of type I (n 2)... Table of Contents DetailsPreface 5 Chapter One BASIC CONCEPTS 7 Chapter Two n-VECTOR SPACES OF TYPE I AND THEIR PROPERTIES 13 Chapter Three APPLICATIONS OF n-LINEAR ALGEBRA OF TYPE I 81 Chapter Four SUGGESTED PROBLEMS 103 FURTHER READING 111 INDEX 116 ABOUT THE AUTHORS 120...
 Date: 2013, Volume 1, No. 1, 2005 Book Id: WPLBN0002828560 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsThe main purpose of this paper is using the elementary method to study the mean value properties of the Smarandache function, and give an interesting asymptotic formula.... Excerpt Detailsx1. Introduction In reference [1], the Smarandache Sum of Composites Between Factors function SCBF(n) is defined as: The sum of composite numbers between the smallest prime factor of n and the largest prime factor of n. For example, SCBF(14)=10, since 2£7 = 14 and the sum of the composites between 2 and 7 is: 4 + 6 = 10. In reference [2]: A number n is called simple number if the product of its proper divisors is less than or equal to n. Let A denotes set of all simple numbers. That is, A = f2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14; 15; 17; 19; 21. ... Table of Contents DetailsOn the Smarandache function and square complements 1 Zhang Wenpeng , Xu Zhefeng On the integer part of the k -th root of a positive integer 5 Zhang Tianping , Ma Yuankui Smarandache “Chopped” NN and N + 1N¡1 9 Jason Earls The 57 -th Smarandache’s problem II 13 Liu Huaning , Gao Jing Perfect Powers in Smarandache n - Expressions 15 Muneer Jebreel Karama On the m -th power residue of n 25 Li Junzhuang and Zhao Jian Generalization of the divisor products and proper divisor products sequences 29 Liang Fangchi The science of lucky sciences 33 Jon Perry Smarandache Sequence of Unhappy Numbers 37 Muneer Jebreel Karama On m -th power free part of an integer 39 Zhao Xiaopeng and Ren Zhibin On two new arithmetic functions and the k -power complement number sequences 43 Xu Zhefeng Smarandache Replicating Digital Function Numbers 49 Jason Earls On the m -power residues numbers sequence 53 Ma Yuankui , Zhang Tianping Smarandache Reverse Power Summation Numbers 57 Jason Earls Some Smarandache Identities 59 Muneer Jebreel Karama On the integer part of a positive integer’s k -th root 61 Yang Hai , F...
 Date: 2013, Volume 9, Number 2 Book Id: WPLBN0002828492 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsA short collection of mathematical papers from various authors relating to Florentin Smaradache's theories. Excerpt DetailsThis dual will be studied in a separate paper (in preparation). 2. The additive analogues of the functions 5 and 5. are real variable functions, and have been defined and studied in paper [31. (See also one book [61, pp. 171-174). These functions have been recently further extended, by the use of Euler's gamma function, ill place of the factorial (see [1]). We note that in what follows, we could define also the additive analogues functions by the use of Euler's gamma function. However, we shall apply the more transparent notation of a factorial of a positive integer.... Table of Contents DetailsJozsef Sandor ON ADDITIVE ANALOGUES OF CERTAIN ARITHMETIC FUNCTIONS 29-32 M. Perez (Ed.) ON SOME SMARANDACHE PROBLEMS 33-38 M. Perez (Ed.) ON SOME PROBLEMS RELATED TO SMARANDACHE NOTIONS 39-40 G. Gregory (Ed.) GENERALIZED SMARANDACHE PALINDROME 41 M. Vassilev - lVlissana ON 15-TH SMARANDACHE'S PROBLEM 42-45 K. Atanassov ON THE SECOND SMARANDACHE'S PROBLEM 46-48...
 Book Id: WPLBN0002828488 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsThis book has six chapters. First chapter is introductory in nature. The new concept of non-associative semi-linear algebras is introduced in chapter two. This structure is built using groupoids over semi-fields. Third chapter introduces the notion of non-associative linear algebras. These algebraic structures are built using the new class of loops. All these non-associative linear algebras are defined over the prime characteristic field Zp, p a prime. However if we take polynomial non associative, linear algebras over Zp, p a prime; they are of infinite dimension over Zp. We in chapter four introduce the notion of groupoid vector spaces of finite and infinite order and their generalizations. Only when this study becomes popular and familiar among researchers several applications will be found. The final chapter suggests around 215 problems some of which are at research level. ... Excerpt DetailsLn(m) is a loop of order n + 1 that is Ln(m) is always of even order greater than or equal to 6. For more about these loops please refer [37]. All properties discussed in case of groupoids can be done for the case of loops. However the resultant product may not be a loop in general. For the concept of semifield refer [41]. We will be using these loops and groupoids to build linear algebra and semilinear algebras which are non associative. ... Table of Contents DetailsPreface 5 Chapter One BASIC CONCEPTS 7 Chapter Two NON ASSOCIATIVE SEMILINEAR ALGEBRAS 13 Chapter Three NON ASSOCIATIVE LINEAR ALGEBRAS 83 Chapter Four GROUPOID VECTOR SPACES 111 Chapter Five APPLICATION OF NON ASSOCIATIVE VECTOR SPACES / LINEAR ALGEBRAS 161 Chapter Six SUGGESTED PROBLEMS 163 FURTHER READING 225 INDEX 229 ABOUT THE AUTHORS 231 ...
 Book Id: WPLBN0002828486 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsThis book has six chapters. The first one is introductory in nature. Second chapter introduces complex modulo integer groupoids and complex modulo integer loops using C(Zn). This chapter gives 77 examples and forty theorems. Chapter three introduces the notion of nonassociative complex rings both finite and infinite using complex groupoids and complex loops. This chapter gives over 120 examples and thirty theorems. Forth chapter introduces nonassociative structures using complex modulo integer groupoids and quasi loops. This new notion is well illustrated by 140 examples. These can find applications only in due course of time, when these new concepts become familiar. The final chapter suggests over 300 problems some of which are research problems.... Table of Contents DetailsTHEOREM 2.1: Let G = {C(Zn), *, (t, u); t, u ∈ Zn} be a complex modulo integer groupoid. If H ⊆ G is such that H is a Smarandache modulo integer subgroupoid, then G is a Smarandache complex modulo integer groupoid. But every subgroupoid of G need not be a Smarandache complex modulo interger subgroupoid even if G is a Smarandache groupoid. Proof is direct and hence is left as an exercise to the reader. Example 2.28: Consider G = {C(Z8), *, (2, 4)}, a complex modulo integer groupoid....
 Book Id: WPLBN0002828482 Subjects: Non Fiction, Education, Neutrosophic Logic ► Abstract Description DetailsThis book is organized into seven chapters. Chapter one is introductory in content. The notion of neutrosophic set linear algebras and neutrosophic neutrosophic set linear algebras are introduced and their properties analysed in chapter two. Chapter three introduces the notion of neutrosophic semigroup linear algebras and neutrosophic group linear algebras. A study of their substructures are systematically carried out in this chapter. The fuzzy analogue of neutrosophic group linear algebras, neutrosophic semigroup linear algebras and neutrosophic set linear algebras are introduced in chapter four of this book. Chapter five introduces the concept of neutrosophic group bivector spaces, neutrosophic bigroup linear algebras, neutrosophic semigroup (bisemigroup) linear algebras and neutrosophic biset bivector spaces. The fuzzy analogue of these concepts are given in chapter six. An interesting feature of this book is it contains nearly 424 examples of these new notions. The final chapter suggests over 160 problems which is another interesting feature of this book.... Excerpt DetailsNow we proceed onto define the notion of neutrosophic subgroup of a neutrosophic group. DEFINITION 1.2: Let N(G) = (GuI) be a neutrosophic group generated by G and I. A proper subset P(G) is said to be a neutrosophic subgroup if P(G) is a neutrosophic group i.e. P(G) must contain a (sub) group. Example 1.3: Let N(Z2) = 􀂢Z2 􀂉 I􀂲 be a neutrosophic group under addition. N(Z2) = {0, 1, I, 1 + I}. Now we see {0, I} is a group under + in fact a neutrosophic group {0, 1 + I} is a group under ‘+’ but we call {0, I} or {0, 1 + I} only as pseudo neutrosophic groups for they do not have a proper subset which is a group. So {0, I} and {0, 1 + I} will be only called as pseudo neutrosophic groups (subgroups). We can thus define a pseudo neutrosophic group as a neutrosophic group, which does not contain a proper subset which is a group. Pseudo neutrosophic subgroups can be found as a substructure of neutrosophic groups. Thus a pseudo neutrosophic group though has a group structure is not a neutrosophic group and a neutrosophic group cannot be a pseudo neutrosophic group. Both the concepts are different. Now we see a neutrosophic group ... Table of Contents DetailsPreface 5 Chapter One INTRODUCTION 7 Chapter Two SET NEUTROSOPHIC LINEAR ALGEBRA 13 2.1 Type of Neutrosophic Sets 13 2.2 Set Neutrosophic Vector Space 16 2.3 Neutrosophic Neutrosophic Integer Set Vector Spaces 40 2.4 Mixed Set Neutrosophic Rational Vector Spaces and their Properties 52 Chapter Three NEUTROSOPHIC SEMIGROUP LINEAR ALGEBRA 91 3.1 Neutrosophic Semigroup Linear Algebras 91 3.2 Neutrosophic Group Linear Algebras 113 Chapter Four NEUTROSOPHIC FUZZY SET LINEAR ALGEBRA 135 Chapter Five NEUTROSOPHIC SET BIVECTOR SPACES 155 Chapter Six NEUTROSOPHIC FUZZY GROUP BILINEAR ALGEBRA 219 Chapter Seven SUGGESTED PROBLEMS 247 FURTHER READING 277 INDEX 280 ABOUT THE AUTHORS 286 ...
 Book Id: WPLBN0002828478 Subjects: Non Fiction, Education, Neutrosophic Logic ► Abstract Description DetailsThis book has four chapters. Chapter one is introductory in nature, for it recalls some basic definitions essential to make the book a self-contained one. Chapter two, introduces for the first time the new notion of neutrosophic rings and some special neutrosophic rings like neutrosophic ring of matrix and neutrosophic polynomial rings. Chapter three gives some new classes of neutrosophic rings like group neutrosophic rings, neutrosophic group neutrosophic rings, semigroup neutrosophic rings, S-semigroup neutrosophic rings which can be realized as a type of extension of group rings or generalization of group rings. Study of these structures will throw light on the research on the algebraic structure of group rings. Chapter four is entirely devoted to the problems on this new topic, which is an added attraction to researchers. A salient feature of this book is that it gives 246 problems in Chapter four. Some of the problems are direct and simple, some little difficult and some can be taken up as a research problem.... Excerpt DetailsNow we proceed onto define the notion of neutrosophic subgroup of a neutrosophic group. DEFINITION 1.1.2: Let N(G) = 〈G ∪ I〉 be a neutrosophic group generated by G and I. A proper subset P(G) is said to be a neutrosophic subgroup if P(G) is a neutrosophic group i.e. P(G) must contain a (sub) group. Example 1.1.3: Let N(Z2) = 〈Z2 ∪ I〉 be a neutrosophic group under addition. N(Z2) = {0, 1, I, 1 + I}. Now we see {0, I} is a group under + in fact a neutrosophic group {0, 1 + I} is a group under ‘+’ but we call {0, I} or {0, 1 + I} only as pseudo neutrosophic groups for they do not have a proper subset which is a group. So {0, I} and {0, 1 + I} will be only called as pseudo neutrosophic groups (subgroups). We can thus define a pseudo neutrosophic group as a neutrosophic group, which does not contain a proper subset which is a group. Pseudo neutrosophic subgroups can be found as a substructure of neutrosophic groups. Thus a pseudo neutrosophic group though has a group structure is not a neutrosophic group and a neutrosophic group cannot be a pseudo neutrosophic group. Both the concepts are different. Now we see a neutrosophi... Table of Contents DetailsPreface 5 Chapter One INTRODUCTION 1.1 Neutrosophic Groups and their Properties 7 1.2 Neutrosophic Semigroups 20 1.3 Neutrosophic Fields 27 Chapter Two NEUTROSOPHIC RINGS AND THEIR PROPERTIES 2.1 Neutrosophic Rings and their Substructures 29 2.2 Special Type of Neutrosophic Rings 41 Chapter Three NEUTROSOPHIC GROUP RINGS AND THEIR GENERALIZATIONS 3.1 Neutrosophic Group Rings 59 3.2 Some special properties of Neutrosophic Group Rings 73 3.3 Neutrosophic Semigroup Rings and their Generalizations 85 Chapter Four SUGGESTED PROBLEMS 107 REFERENCES 135 INDEX 149 ABOUT THE AUTHORS 154 ...
 Book Id: WPLBN0002828470 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsWe in this book introduce the notion of pure (mixed) neutrosophic interval bisemigroups or neutrosophic biinterval semigroups. We derive results pertaining to them. The new notion of quasi bisubsemigroups and ideals are introduced. Smarandache interval neutrosophic bisemigroups are also introduced and analysed. Also notions like neutrosophic interval bigroups and their substructures are studied in section two of this chapter. Neutrosophic interval bigroupoids and the identities satisfied by them are studied in section three of this chapter. The final section of chapter one introduces the notion of neutrosophic interval biloops and studies them. Chapter two of this book introduces the notion of neutrosophic interval birings and bisemirings. Several results in this direction are derived and described. Even new bistructures like neutrosophic interval ring-semiring or neutrosophic interval semiring-ring are introduced and analyzed. Further in this chapter the concept of neutrosophic biinterval vector spaces or neutrosophic interval bivector spaces are introduced and their properties are described. In the third chapter we introduce the n... Excerpt DetailsNow we will be using these intervals and work with our results. However by the context the reader can understand whether we are working with pure neutrosophic intervals or neutrosophic of rationals or integers or reals or modulo integers. This chapter has four sections. Section one introduces neutrosophic interval bisemigroups, neutrosophic interval bigroups are introduced in section two. Section three defines biinterval neutrosophic bigroupoids. The final section gives the notion of neutrosophic interval biloops.... Table of Contents DetailsPreface 5 Chapter One BASIC CONCEPTS 7 1.1 Neutrosophic Interval Bisemigroups 8 1.2 Neutrosophic Interval Bigroups 32 1.3 Neutrosophic Biinterval Groupoids 41 1.4 Neutrosophic Interval Biloops 57 Chapter Two NEUTROSOPHIC INTERVAL BIRINGS AND NEUTROSOPHIC INTERVAL BISEMIRINGS 75 2.1 Neutrosophic Interval Birings 75 2.2 Neutrosophic Interval Bisemirings 85 2.3 Neutrosophic Interval Bivector Spaces and their Generalization 93 Chapter Three NEUTROSOPHIC n- INTERVAL STRUCTURES (NEUTROSOPHIC INTERVAL n-STRUCTURES) 127 Chapter Four APPLICATIONS OF NEUTROSOPHIC INTERVAL ALGEBRAIC STRUCTURES 159 Chapter Five SUGGESTED PROBLEMS 161 FURTHER READING 187 INDEX 189 ABOUT THE AUTHORS 195 ...
 Book Id: WPLBN0002828464 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsThe first chapter is introductory in nature and gives a few essential definitions and references for the reader to make use of the literature in case the reader is not thorough with the basics. The second chapter deals with different types of neutrosophic bilinear algebras and bivector spaces and proves several results analogous to linear bialgebra. In chapter three the authors introduce the notion of n-linear algebras and prove several theorems related to them. Many of the classical theorems for neutrosophic algebras are proved with appropriate modifications. Chapter four indicates the probable applications of these algebraic structures. The final chapter suggests about 80 innovative problems for the reader to solve.... Table of Contents DetailsDedication 5 Preface 7 Chapter One INTRODUCTION TO BASIC CONCEPTS 9 1.1 Introduction to Bilinear Algebras and their Generalizations 9 1.2 Introduction to Neutrosophic Algebraic Structures 11 Chapter Two NEUTROSOPHIC LINEAR ALGEBRA 15 2.1 Neutrosophic Bivector Spaces 15 2.2 Strong Neutrosophic Bivector Spaces 32 2.3 Neutrosophic Bivector Spaces of Type II 50 2.4 Neutrosophic Biinner Product Bivector Space 198 Chapter Three NEUTROSOPHIC n-VECTOR SPACES 205 3.1 Neutrosophic n-Vector Space 205 3.2 Neutrosophic Strong n-Vector Spaces 276 3.3 Neutrosophic n-Vector Spaces of Type II 307 Chapter Four APPLICATIONS OF NEUTROSOPHIC n-LINEAR ALGEBRAS 359 Chapter Five SUGGESTED PROBLEMS 361 FURTHER READING 391 INDEX 396 ABOUT THE AUTHORS 402...
 Book Id: WPLBN0002828456 Subjects: Non Fiction, Education, Algebra ► Abstract Description DetailsThis book has eight chapters. The first chapter is introductory in nature. Polynomials with matrix coefficients are introduced in chapter two. Algebraic structures on these polynomials with matrix coefficients is defined and described in chapter three. Chapter four introduces natural product on matrices. Natural product on super matrices is introduced in chapter five. Super matrix linear algebra is introduced in chapter six. Chapter seven claims only after this notion becomes popular we can find interesting applications of them. The final chapter suggests over 100 problems some of which are at research level.... Excerpt DetailsIn this chapter we only indicate as reference of those the concepts we are using in this book. However the interested reader should refer them for a complete understanding of this book. In this book we define the notion of natural product in matrices so that we have a nice natural product defined on column matrices, m * n (m ≠ n) matrices. This extension is the same in case of row matrices. We make use of the notion of semigroups and Smarandache semigroups. Also the notion of semirings, Smarandache semirings, semi vector spaces and semifields are used....
 Book Id: WPLBN0002828318 Subjects: Non Fiction, Education, Graph Theory ► Abstract Description DetailsThis book has four chapters. Chapter one is introductory in nature. The reader is expected to have a good background of algebra and graph theory in order to derive maximum understanding of this research. The second chapter represents groups as graphs. The main feature of this chapter is that it contains 93 examples with diagrams and 18 theorems. In chapter three we describe commutative semigroups, loops, commutative groupoids and commutative rings as special graphs. The final chapter contains 52 problems.... Table of Contents DetailsPreface 5 Chapter One INTRODUCTION TO SOME BASIC CONCEPTS 7 1.1 Properties of Rooted Trees 7 1.2 Basic Concepts 9 Chapter Two GROUPS AS GRAPHS 17 Chapter Three IDENTITY GRAPHS OF SOME ALGEBRAIC STRUCTURES 89 3.1 Identity Graphs of Semigroups 89 3.2 Special Identity Graphs of Loops 129 3.3 The Identity Graph of a Finite Commutative Ring with Unit 134 Chapter Four SUGGESTED PROBLEMS 157 FURTHER READING 162 INDEX 164 ABOUT THE AUTHORS 168...
 1|2|3|4|5 Records: 1 - 20 of 87 - Pages: