World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000089092
Reproduction Date:

Title: Acetal  
Author: World Heritage Encyclopedia
Language: English
Subject: Hemiacetal, Functional group, Moiety (chemistry), Thioacetal, Cleavable detergent
Collection: Acetals, Functional Groups, Protecting Groups
Publisher: World Heritage Encyclopedia


Structure of a generic ketal

An acetal is a carbonyl compounds (aldehydes or ketones R2C=O). The term ketal is sometimes used to identify structures associated with ketones rather than aldehydes, and historically, the term acetal was used specifically for the aldehyde cases.[1] Cellulose is a ubiquitous example of an acetal.

Formation of an acetal occurs when the hydroxyl group of a hemiacetal becomes protonated and is lost as water. The carbocation ion that is produced is then rapidly attacked by a molecule of alcohol. Loss of the proton from the attached alcohol gives the acetal.

Acetals are stable compared to hemiacetals but their formation is a reversible equilibrium as with esters. As a reaction to create an acetal proceeds, water must be removed from the reaction mixture, for example, with a Dean-Stark apparatus, lest it will hydrolyse the product back to the hemiacetal. The formation of acetals reduces the total number of molecules present and therefore is not favourable with regards to entropy. A way to improve this is to use an orthoester as a source of alcohol. Aldehydes and ketones undergo a process called acetal exchange with orthoesters to give acetals. Water produced along with the acetal product is used up in hydrolysing the orthoester and producing more alcohol to be used in the reaction.

Most glycosidic bonds in carbohydrates and other polysaccharides are acetal linkages.[2] Acetaldehyde diethyl acetal, sometimes called simply "acetal", is an important flavouring compound in distilled beverages.[3]

The plastic known as acetal is a polyacetal of formaldehyde.

Acetals are used as bases and with respect to many oxidizing and reducing agents. They can either protect the carbonyl in a molecule (by temporarily reacting it with an alcohol) or a diol (by temporarily reacting it with a carbonyl). That is, either the carbonyl, or the alcohols, or both could be part of the molecule whose reactivity is to be controlled.

Various specific carbonyl compounds have special names for their acetal forms. For example, an acetal formed from formaldehyde is sometimes called a "formal"[4] or the methylenedioxy group. The acetal formed from acetone is sometimes called an acetonide.


  • Acetalisation 1
  • Examples of acetals 2
  • See also 3
  • References 4


Acetalisation is the protecting group because it is a reversible reaction.

Acetalisation is acid catalysed with elimination of water; acetals do not form under basic conditions. The reaction can be driven to the acetal when water is removed from the reaction system either by azeotropic distillation or trapping water with molecular sieves or aluminium oxide.

The carbonyl group in 1 takes a proton from hydrochloric acid. The protonated carbonyl group 2 is activated for nucleophilic addition of the alcohol. The structures 2a and 2b are mesomers. After deprotonation of 3 by water the hemiacetal or hemiketal 4 is formed. The hydroxyl group in 4 is protonated leading to the oxonium ion 6 which accepts a second alcohol group to 7 with a final deprotonation to the acetal 8. The reverse reaction takes place by adding water in the same acidic medium. Acetals are stable towards basic media. In a transacetalisation or crossacetalisation a diol reacts with an acetal or two different acetals react with each other. Again this is possible because all the reaction steps are equilibria.

Acetalisation Mechanism

Examples of acetals

See also


  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "ketals".
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "glycosides".
  3. ^ Volatile Compounds in Foods and Beverages, ISBN 0-8247-8390-5, p.554
  4. ^ Morrison. Robert. T, and Boyd. Robert. N, "Organic Chemistry (6th ed)". p683. Prentice-Hall Inc (1992).
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.