World Library  
Flag as Inappropriate
Email this Article
 

Degenerate distribution

Degenerate
Cumulative distribution function
Plot of the degenerate distribution CDF for k0=0
CDF for k0=0. The horizontal axis is the index i of ki.
Parameters k_0 \in (-\infty,\infty)\,
Support k=k_0\,
pmf δ({x-k_0\,})
CDF \begin{matrix} 0 & \mbox{for }k
Mean k_0\,
Median k_0\,
Mode k_0\,
Variance 0\,
Skewness undefined
Ex. kurtosis undefined
Entropy 0\,
MGF e^{k_0t}\,
CF e^{ik_0t}\,

In mathematics, a degenerate distribution or deterministic distribution is the probability distribution of a random variable which only takes a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.

The degenerate distribution is localized at a point k0 on the real line. The probability mass function equals 1 at this point and 0 elsewhere.

The distribution can be viewed as the limiting case of a continuous distribution whose variance goes to 0 causing the probability density function to be a delta function at k0, with infinite height there but area equal to 1.

The cumulative distribution function of the degenerate distribution is:

F(k;k_0)=\left\{\begin{matrix} 1, & \mbox{if }k\ge k_0 \\ 0, & \mbox{if }k

Constant random variable

In probability theory, a constant random variable is a discrete random variable that takes a constant value, regardless of any event that occurs. This is technically different from an almost surely constant random variable, which may take other values, but only on events with probability zero. Constant and almost surely constant random variables provide a way to deal with constant values in a probabilistic framework.

Let  X: Ω → R  be a random variable defined on a probability space  (Ω, P). Then  X  is an almost surely constant random variable if there exists c \in \mathbb{R} such that

\Pr(X = c) = 1,

and is furthermore a constant random variable if

X(\omega) = c, \quad \forall\omega \in \Omega.

Note that a constant random variable is almost surely constant, but not necessarily vice versa, since if  X  is almost surely constant then there may exist  γ ∈ Ω  such that  X(γ) ≠ c  (but then necessarily Pr({γ}) = 0, in fact Pr(X ≠ c) = 0).

For practical purposes, the distinction between  X  being constant or almost surely constant is unimportant, since the cumulative distribution function  F(x)  of  X  does not depend on whether  X  is constant or 'merely' almost surely constant. In this case,

F(x) = \begin{cases}1, &x \geq c,\\0, &x < c.\end{cases}

The function  F(x)  is a step function; in particular it is a translation of the Heaviside step function.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.