World Library  
Flag as Inappropriate
Email this Article

Canvas element

Article Id: WHEBN0003065894
Reproduction Date:

Title: Canvas element  
Author: World Heritage Encyclopedia
Language: English
Subject: HTML, WebGL, Comparison of layout engines (HTML5), Express Animator, Comparison of JavaScript charting frameworks
Collection: Html, Html Tags
Publisher: World Heritage Encyclopedia

Canvas element

The canvas element is part of HTML5 and allows for dynamic, scriptable rendering of 2D shapes and bitmap images. It is a low level, procedural model that updates a bitmap and does not have a built-in scene graph.


  • History 1
  • Usage 2
  • Example 3
  • Canvas element size versus drawing surface size 4
  • Canvas versus Scalable Vector Graphics (SVG) 5
  • Reactions 6
    • Intellectual property over canvas 6.1
  • Browser support 7
  • See also 8
  • References 9
  • External links 10


Canvas was initially introduced by Apple for use inside their own Mac OS X WebKit component in 2004,[1] powering applications like Dashboard widgets and the Safari browser. Later, in 2005 it was adopted in version 1.8 of Gecko browsers,[2] and Opera in 2006,[3] and standardized by the Web Hypertext Application Technology Working Group (WHATWG) on new proposed specifications for next generation web technologies.


Canvas consists of a drawable region defined in HTML code with height and width attributes. JavaScript code may access the area through a full set of drawing functions similar to those of other common 2D APIs, thus allowing for dynamically generated graphics. Some anticipated uses of canvas include building graphs, animations, games, and image composition.


The following code creates a Canvas element in an HTML page:

This text is displayed if your browser does not support HTML5 Canvas.

Using JavaScript, you can draw on the canvas:

var example = document.getElementById('example');
var context = example.getContext('2d');
context.fillStyle = 'red';
context.fillRect(30, 30, 50, 50);

This code draws a red rectangle on the screen.

The Canvas API also provides save() and restore(), for saving and restoring all the canvas context’s attributes.

Canvas element size versus drawing surface size

A canvas actually has two sizes: the size of the element itself and the size of the element’s drawing surface. Setting the element's width and height attributes sets both of these sizes; CSS attributes affect only the element’s size and not the drawing surface.

By default, both the canvas element’s size and the size of its drawing surface is 300 screen pixels wide and 150 screen pixels high. In the listing shown in the example, which uses CSS to set the canvas element’s size, the size of the element is 600 pixels wide and 300 pixels high, but the size of the drawing surface remains unchanged at the default value of 300 pixels × 150 pixels. When a canvas element’s size does not match the size of its drawing surface, the browser scales the drawing surface to fit the element (which may result in surprising and unwanted effects).

Example on setting element size and drawing surface size to different values:

Canvas element size: 600 x 300,
Canvas drawing surface size: 300 x 150

Canvas not supported

Canvas versus Scalable Vector Graphics (SVG)

SVG is an earlier standard for drawing shapes in browsers. However, unlike canvas, which is raster-based, SVG is vector-based, i.e., each drawn shape is remembered as an object in a scene graph or Document Object Model, which is subsequently rendered to a bitmap. This means that if attributes of an SVG object are changed, the browser can automatically re-render the scene.

In the canvas example above, once the rectangle is drawn, the fact that it was drawn is forgotten by the system. If its position were to be changed, the entire scene would need to be redrawn, including any objects that might have been covered by the rectangle. But in the equivalent SVG case, one could simply change the position attributes of the rectangle and the browser would determine how to repaint it. There are additional JavaScript libraries that add scene-graph capabilities to the canvas element. It is also possible to paint a canvas in layers and then recreate specific layers.

SVG images are represented in XML, and complex scenes can be created and maintained with XML editing tools.

The SVG scene graph enables event handlers to be associated with objects, so a rectangle may respond to an onClick event. To get the same functionality with canvas, one must manually match the coordinates of the mouse click with the coordinates of the drawn rectangle to determine whether it was clicked.

Conceptually, canvas is a lower-level API upon which an engine, supporting for example SVG, might be built. There are JavaScript libraries that provide partial SVG implementations using canvas for browsers that do not provide SVG but support canvas, such as the browsers in Android 2.x. However, this is not (normally) the case—they are independent standards. The situation is complicated because there are scene graph libraries for canvas, and SVG has some bitmap manipulation functionality.


At the time of its introduction the canvas element was met with mixed reactions from the web standards community. There have been arguments against Apple's decision to create a new proprietary element instead of supporting the SVG standard. There are other concerns about syntax, e.g., the absence of a namespace.[4]

Intellectual property over canvas

On March 14, 2007, WebKit developer Dave Hyatt forwarded an email from Apple's Senior Patent Counsel, Helene Plotka Workman,[5] which stated that Apple reserved all intellectual property rights relative to WHATWG’s Web Applications 1.0 Working Draft, dated March 24, 2005, Section 10.1, entitled “Graphics: The bitmap canvas”,[6] but left the door open to licensing the patents should the specification be transferred to a standards body with a formal patent policy. This caused considerable discussion among web developers, and raised questions concerning the WHATWG's lack of a policy on patents in comparison to the World Wide Web Consortium (W3C)'s explicit favoring of royalty-free licenses. Apple later disclosed the patents under the W3C's royalty-free patent licensing terms.[7] The disclosure means that Apple is required to provide royalty-free licensing for the patent whenever the Canvas element becomes part of a future W3C recommendation created by the HTML working group.[8]

Browser support

The element is supported by the current versions of Mozilla Firefox, Google Chrome, Internet Explorer, Safari, Konqueror and Opera.[9] Older versions of Internet Explorer, version 8 and earlier do not support canvas, however Google and Mozilla plugins are available.[10]

A detailed overview of the canvas support regarding the most popular browsers[11] (as a percentage of market share as of July 2013, taken from Usage share of web browsers):
   Internet Explorer       Firefox       Safari (Desktop)       Chrome      Opera (Desktop)       Safari (Mobile)       Opera (Mobile)       Android Browser   
6.0 2.0 - 6.0 3.1 - 3.2 4.0 - 13.0 9.0 - 11.0 3.2 10.0 2.0
7.0 7.0 4.0 14.0 11.1 4.0 11.0 2.1
8.0 8.0 5.0 15.0 11.5 4.2 - 4.3 11.1 2.3,3.0
9.0 9.0 5.1 16.0 11.6 5.0 11.5 4.0
20% 17% 7% 36% 1% 4% 3% 5%

See also


  1. ^
  2. ^
  3. ^ Opera 9.0 changelog
  4. ^ Ian Hickson remarks regarding canvas and other Apple extensions to HTML
  5. ^ [whatwg] Web Applications 1.0 Draft, David Hyatt, Wed Mar 14 14:31:53 PDT 2007
  6. ^ Dynamic graphics: The bitmap canvasWeb Applications 1.0 Early Working Draft -
  7. ^ HTML Working Group Patent Policy Status – Known Disclosures
  8. ^ W3C patent policy in use by HTML working group
  9. ^
  10. ^
  11. ^

External links

  • Canvas description in WHATWG Web Applications draft specifications
  • Canvas reference page in Apple Developers Connection
  • Basic Canvas Tutorial on Opera Developer Community
  • Canvas tutorial and introductory page on Mozilla Developer center
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.