World Library  
Flag as Inappropriate
Email this Article

Penryn (microarchitecture)

Article Id: WHEBN0027322600
Reproduction Date:

Title: Penryn (microarchitecture)  
Author: World Heritage Encyclopedia
Language: English
Subject: Yorkfield, Wolfdale (microprocessor), Penryn (microprocessor), Lynnfield (microprocessor), Bonnell (microarchitecture)
Publisher: World Heritage Encyclopedia

Penryn (microarchitecture)

L1 cache 64 KB per core
L2 cache 3 MB to 12 MB unified
L3 cache 8 MB to 16 MB shared (Xeon)
Predecessor Core
Successor Nehalem

In Intel's Tick-Tock cycle, the 2007/2008 "Tick" was the shrink of the Core microarchitecture to 45 nanometers as CPUID model 23. In Core 2 processors, it is used with the code names Penryn (Socket P), Wolfdale (LGA 775) and Yorkfield (MCM, LGA 775), some of which are also sold as Celeron, Pentium and Xeon processors. In the Xeon brand, the Wolfdale-DP and Harpertown code names are used for LGA 771 based MCMs with two or four active Wolfdale cores.

The chips come in two sizes, with 6 MB and 3 MB L2 cache. The smaller version is commonly called Penryn-3M and Wolfdale-3M as well as Yorkfield-6M, respectively. The single-core version of Penryn, listed as Penryn-L here, is not a separate model like Merom-L but a version of the Penryn-3M model with only one active core.

CPU List

Processor Brand name Model (list) Cores L2 Cache Socket TDP
Penryn-L Core 2 Solo SU3xxx 1 3 MiB BGA956 5.5 W
Penryn-3M Core 2 Duo SU7xxx 2 3 MB BGA956 10 W
Penryn SL9xxx 6 MiB 17 W
SP9xxx 25/28 W
Penryn-3M P7xxx 3 MiB Socket P
25 W
Penryn P9xxx 6 MiB
Penryn-3M T6xxx 2 MiB 35 W
T8xxx 3 MiB
Penryn T9xxx 6 MiB
E8x35 6 MiB Socket P 35-55 W
Penryn-QC Core 2 Quad Q9xxx 4 2x3-2x6 MiB Socket P 45 W
Penryn XE Core 2 Extreme X9xxx 2 6 MiB Socket P 44 W
Penryn-QC QX9xxx 4 2x6 MiB 45 W
Penryn-3M Celeron T3xxx 2 1 MiB Socket P 35 W
SU2xxx µFC-BGA 956 10 W
Penryn-L 9x0 1 1 MiB Socket P 35 W
7x3 µFC-BGA 956 10 W
Penryn-3M Pentium T4xxx 2 1 MiB Socket P 35 W
SU4xxx 2 MiB µFC-BGA 956 10 W
Penryn-L SU2xxx 1 5.5 W
Celeron E3xxx 2 1 MB LGA 775 65 W
Pentium E2210
E5xxx 2 MB
Core 2 Duo E7xxx 3 MB
Wolfdale E8xxx 6 MB
Xeon 31x0 45-65 W
Wolfdale-CL 30x4 1 LGA 771 30 W
31x3 2 65 W
Yorkfield Xeon X33x0 4 2×3–2×6 MB LGA 775 65–95 W
Yorkfield-CL X33x3 LGA 771 80 W
Yorkfield-6M Core 2 Quad Q8xxx 2×2 MB LGA 775 65–95 W
Q9x0x 2×3 MB
Yorkfield Q9x5x 2×6 MB
Yorkfield XE Core 2 Extreme QX9xxx 2×6 MB 130–136 W
QX9xx5 LGA 771 150 W
Wolfdale-DP Xeon E52xx 2 6 MB LGA 771 65 W
L52xx 20-55 W
X52xx 80 W
Harpertown E54xx 4 2×6 MB LGA 771 80 W
L54xx 40-50 W
X54xx 120-150 W

Processor cores

The processors of the Core microarchitecture can be categorized by number of cores, cache size, and socket; each combination of these has a unique code name and product code that is used across a number of brands. For instance, code name "Allendale" with product code 80557 has two cores, 2 MB L2 cache and uses the desktop socket 775, but has been marketed as Celeron, Pentium, Core 2 and Xeon, each with different sets of features enabled. Most of the mobile and desktop processors come in two variants that differ in the size of the L2 cache, but the specific amount of L2 cache in a product can also be reduced by disabling parts at production time. Wolfdale-DP and all quad-core processors except Dunnington QC are multi-chip modules combining two dies. For the 65 nm processors, the same product code can be shared by processors with different dies, but the specific information about which one is used can be derived from the stepping.

fab cores Mobile Desktop, UP Server CL Server DP Server MP Server
Single-Core 45 nm 45 nm 1 Penryn-L
Dual-Core 45 nm 45 nm 2 Penryn-3M
Quad-Core 45 nm 45 nm 4 Penryn-QC
Dunnington QC
Six-Core 45 nm 45 nm 6 Dunnington

Steppings using 45 nm process

Mobile (Penryn) Desktop (Wolfdale) Desktop (Yorkfield) Server (Wolfdale-DP, Harpertown, Dunnington)
Stepping Released Area CPUID L2 cache Max. clock Celeron Pentium Core 2 Celeron Pentium Core 2 Xeon Core 2 Xeon Xeon
C0 Nov 2007 107 mm² 10676 6 MiB 3.00 GHz E8000 P7000 T8000 T9000 P9000 SP9000 SL9000 X9000 E8000 3100 QX9000 5200 5400
M0 Mar 2008 82 mm² 10676 3 MiB 2.40 GHz 7xx SU3000 P7000 P8000 T8000 SU9000 E5000 E2000 E7000
C1 Mar 2008 107 mm² 10677 6 MiB 3.20 GHz Q9000 QX9000 3300
M1 Mar 2008 82 mm² 10677 3 MiB 2.50 GHz Q8000 Q9000 3300
E0 Aug 2008 107 mm² 1067A 6 MiB 3.33 GHz T9000 P9000 SP9000 SL9000 Q9000 QX9000 E8000 3100 Q9000 Q9000S QX9000 3300 5200 5400
R0 Aug 2008 82 mm² 1067A 3 MiB 2.93 GHz 7xx 900 SU2000 T3000 T4000 SU2000 SU4000 SU3000 T6000 SU7000 P8000 SU9000 E3000 E5000 E6000 E7000 Q8000 Q8000S Q9000 Q9000S 3300
A1 Sep 2008 503 mm² 106D1 3 MiB 2.67 GHz 7400

In the model 23 (cpuid 01067xh), Intel started marketing stepping with full (6 MiB) and reduced (3 MiB) L2 cache at the same time, and giving them identical cpuid values. All steppings have the new SSE4.1 instructions. Stepping C1/M1 was a bug fix version of C0/M0 specifically for quad core processors and only used in those. Stepping E0/R0 adds two new instructions (XSAVE/XRSTOR) and replaces all earlier steppings.

In mobile processors, stepping C0/M0 is only used in the Intel Mobile 965 Express (Santa Rosa refresh) platform, whereas stepping E0/R0 supports the later Intel Mobile 4 Express (Montevina) platform.

Model 30 stepping A1 (cpuid 106d1h) adds an L3 cache as well as six instead of the usual two cores, which leads to an unusually large die size of 503 mm².[1] As of February 2008, it has only found its way into the very high-end Xeon 7400 series (Dunnington).


See also


  1. ^ "ARK entry for Intel Xeon Processor X7460". Intel. Retrieved 14 July 2009. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.