 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Beta negative binomial distribution

Article Id: WHEBN0031118503
Reproduction Date:

 Title: Beta negative binomial distribution Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Beta negative binomial distribution

 Parameters \alpha > 0 shape (real) \beta > 0 shape (real) n ∈ N0 — number of trials k ∈ { 0, 1, 2, 3, ... } \frac{n^{(k)}\alpha^{(n)}\beta^{(k)}}{k!(\alpha+\beta)^{(n)}(n+\alpha+\beta)^{(k)}} Where x^{(n)} is the rising Pochhammer symbol \begin{cases} \frac{n\beta}{\alpha-1} & \text{if}\ \alpha>1 \\ \infty & \text{otherwise}\ \end{cases} \begin{cases} \frac{n(\alpha+n-1)\beta(\alpha+\beta-1)}{(\alpha-2){(\alpha-1)}^2} & \text{if}\ \alpha>2 \\ \infty & \text{otherwise}\ \end{cases} \begin{cases} \frac{(\alpha+2n-1)(\alpha+2\beta-1)}{(\alpha-3)\sqrt{\frac{n(\alpha+n-1)\beta(\alpha+\beta-1)}{\alpha-2}}} & \text{if}\ \alpha>3 \\ \infty & \text{otherwise}\ \end{cases}

In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable X equal to the number of failures needed to get n successes in a sequence of independent Bernoulli trials where the probability p of success on each trial is constant within any given experiment but is itself a random variable following a beta distribution, varying between different experiments. Thus the distribution is a compound probability distribution.

This distribution has also been called both the inverse Markov-Pólya distribution and the generalized Waring distribution. A shifted form of the distribution has been called the beta-Pascal distribution.

If parameters of the beta distribution are α and β, and if

X \mid p \sim \mathrm{NB}(n,p),

where

p \sim \textrm{B}(\alpha,\beta),

then the marginal distribution of X is a beta negative binomial distribution:

X \sim \mathrm{BNB}(n,\alpha,\beta).

In the above, NB(np) is the negative binomial distribution and B(αβ) is the beta distribution.

\left\{(k+1) p(k+1) (\alpha +\beta +k+n)+(\beta +k) (-k-n) p(k)=0,p(0)=\frac{(\alpha )_n}{(\alpha +\beta )_n}\right\}

## Contents

• PMF expressed with Gamma 1
• PMF expressed with Beta 1.1
• Notes 2
• References 3

## PMF expressed with Gamma

Since the rising Pochhammer symbol can be expressed in terms of the Gamma function, the numerator of the PMF as given can be expressed as:

\frac{\Gamma(n+k)\Gamma(\alpha+n)\Gamma(\beta+k)}{\Gamma(n)\Gamma(\alpha)\Gamma(\beta)}.

Likewise, the denominator can be rewritten as:

\frac{\Gamma(\alpha+\beta)\Gamma(\alpha+\beta+n)}{k!\Gamma(\alpha+\beta+n)\Gamma(\alpha+\beta+n+k)},

and the two {\Gamma(\alpha+\beta+n)} terms cancel out, leaving:

\frac{\Gamma(\alpha+\beta)}{k!\Gamma(\alpha+\beta+n+k)}.

As \frac{\Gamma(n+k)}{k!\Gamma(n)} = \binom{n+k-1}k, the PMF can be rewritten as:

\binom{n+k-1}k\frac{\Gamma(\alpha+n)\Gamma(\beta+k)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n+k)\Gamma(\alpha)\Gamma(\beta)}.

### PMF expressed with Beta

Using the beta function, the PMF is:

\binom{n+k-1}k\frac{\Beta(\alpha+n,\beta+k)}{\Beta(\alpha,\beta)}.

Replacing the binomial coefficient by a beta function, the PMF can also be written:

\frac{\Beta(\alpha+n,\beta+k)}{k\Beta(\alpha,\beta)\Beta(n,k)}.