World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000907139
Reproduction Date:

Title: Agmatine  
Author: World Heritage Encyclopedia
Language: English
Subject: Neurotransmitter, Arginine, Alanine, Serine, Glutamic acid
Collection: Amines, Guanidines, Imidazoline Agonists, Metabolism, Neurotransmitters, Nmda Receptor Antagonists
Publisher: World Heritage Encyclopedia


Skeletal formula of an agmatine minor tautomer
IUPAC name
ChemSpider  Y
EC number 206-187-7
Jmol-3D images Image
Molar mass 130.20 g·mol−1
Density 1.2 g/ml
Melting point 102 °C (216 °F; 375 K)
Boiling point 281 °C (538 °F; 554 K)
log P −1.423
Basicity (pKb) 0.52
Flash point 95.8 °C (204.4 °F; 369.0 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Agmatine, also known as (4-aminobutyl)guanidine, is an aminoguanidine that was discovered in 1910 by Albrecht Kossel.[2] It is a common natural compound synthesized by decarboxylation of the amino acid arginine, hence also known as decarboxylated arginine.

Agmatine has been shown to exert modulatory action at multiple molecular targets, notably: neurotransmitter systems, key ion channels, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for further research into potential applications.


  • History 1
  • Metabolic pathways 2
  • Mechanisms of action 3
  • Food consumption 4
  • Pharmacology 5
  • Research 6
    • Cardiovascular 6.1
    • Glucose regulation 6.2
    • Kidney functions 6.3
    • Neurotransmission 6.4
    • Opioid liability 6.5
  • See also 7
  • References 8
  • Further reading 9


The term "agmatin" (German) was coined in 1910 by Albrecht Kossel who first identified the substance in herring sperm.[2] Most probably the term stems from A- (for amino-) + g- (from guanidine) + -ma- (from ptomaine) + -in (German)/-ine (English) suffix with insertion of -t- apparently for euphony.[3] Within a year following its discovery agmatine has been found to increase blood flow in rabbits,[4] but the physiological relevance of these findings was questioned given the high concentrations (high µM range) required.[5] In the 1920s, researchers in the diabetes clinic of Oskar Minkowski have shown that agmatine can exert mild hypoglycemic effects.[6] The scarcity of research on agmatine during the better part of the 20th century (until the early 1990s) is outstanding. Only in 1994, the discovery of endogenous agmatine synthesis in mammals[7] has revived research in the field.

Metabolic pathways

Agmatine Metabolic Pathways

Agmatine biosynthesis by arginine decarboxylation is well-positioned to compete with the principal arginine-dependent pathways, namely: nitrogen metabolism (urea cycle), and polyamine and nitric oxide (NO) synthesis (see illustration 'Agmatine Metabolic Pathways'). Agmatine degradation occurs mainly by hydrolysis, catalyzed by agmatinase into urea and putrescine, the diamine precursor of polyamine biosynthesis. An alternative pathway, mainly in peripheral tissues, is by diamine oxidase-catalyzed oxidation into agmatine-aldehyde, which is in turn converted by aldehyde dehydrogenase into guanidinobutyrate and secreted by the kidneys.

Mechanisms of action

Agmatine was found to exert modulatory actions directly and/or indirectly at multiple key molecular targets underlying cellular control mechanisms of cardinal importance in health and disease. It is considered capable of exerting its modulatory actions simultaneously at multiple targets.[8] The following outline indicates the categories of control mechanisms and identifies their molecular targets:

  • Neurotransmitter receptors and receptor ionophores. Nicotinic, imidazoline I1 and I2, α2- adrenergic, glutamate NMDAr, and serotonin 5-HT2A and 5HT-3 receptors.
  • Ion channels. Including: ATP-sensitive K+ channels, voltage-gated Ca2+ channels, and acid-sensing ion channels (ASICs).
  • Membrane transporters. Agmatine specific-selective uptake sites, organic cation transporters (mostly OCT2 subtype), extraneuronal monoamine transporters (ENT), polyamine transporters, and mitochondrial agmatine specific-selective transport system.
  • Nitric oxide (NO) synthesis modulation. Differential inhibition by agmatine of all isoforms of NO synthase (NOS) is reported.
  • Polyamine metabolism. Agmatine is a precursor for polyamine synthesis, competitive inhibitor of polyamine transport, inducer of spermidine/spermine acetyltransferase (SSAT), and inducer of antizyme.
  • Protein ADP-ribosylation. Inhibition of protein arginine ADP-ribosylation.
  • Matrix metalloproteases (MMPs). Indirect down-regulation of the enzymes MMP 2 and 9.
  • Advanced glycation end product (AGE) formation. Direct blockade of AGEs formation.
  • NADPH oxidase. Activation of the enzyme leading to H2O2 production.[9]

Food consumption

Agmatine sulfate injection can increase food intake with carbohydrate preference in satiated, but not in hungry rats and this effect may be mediated by neuropeptide.[10] However, supplementation in rat drinking water results in reductions in water intake and body weight gain.[11] Also force feeding with agmatine leads to a reduction in body weight gain during rat development.[12]


Agmatine is present in small amounts in plant-, animal-, and fish-derived foodstuff and Gut microbial production is an added source for agmatine. Oral agmatine is absorbed from the gastrointestinal tract and readily distributed throughout the body.[13] Rapid elimination of ingested (un-metabolized) agmatine by the kidneys has indicated a blood half life of about 2 hours.[14]

Agmatine sulfate supplements have been marketed for several years now to the bodybuilding channel, touting muscle-building qualities, although using completely unsubstantiated claims.


A number of potential medical uses for agmatine have been suggested.[15]


Agmatine produces mild reductions in heart rate and blood pressure, apparently by activating both central and peripheral control systems via modulation of several of its molecular targets including: imidazoline receptors subtypes, norepinephrine release and NO production.[16]

Glucose regulation

Agmatine hypoglycemic effects are the result of simultaneous modulation of several molecular mechanisms involved in blood glucose regulation.[8]

Kidney functions

Agmatine has been shown to enhance glomerular filtration rate (GFR) and to exert nephroprotective effects.[17]


Agmatine has been discussed as a putative neurotransmitter/neuromodulator. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to α2-adrenergic receptor and imidazoline receptor binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Short only of identifying specific ("own") post-synaptic receptors, agmatine in fact, fulfills Henry Dale's criteria for a neurotransmitter and is hence, considered a neuromodulator and co-transmitter. But identification of agmatinergic neuronal systems, if exist, still awaits future research.[8]

Opioid liability

Systemic agmatine can potentiate opioid analgesia and prevent tolerance to chronic morphine in laboratory rodents. Since then, cumulative evidence amply shows that agmatine inhibits opioid dependence and relapse in several animal species.[18]

See also


  1. ^ "agmatine (CHEBI:17431)". Chemical Entities of Biological Interest. UK: European Bioinformatics Institute. 15 August 2008. Main. Retrieved 11 January 2012. 
  2. ^ a b Kossel A (1910). "Über das Agmatin". Zeitschrift für Physiologische Chemie (in German) 66: 257–261.  
  3. ^ "agmantine".   (Subscription or UK public library membership required.)
  4. ^ Engeland R, Kutscher F (1910). "Ueber eine zweite wirksame Secale-base.". Zeitschr Physiol Chem (in German) 57: 49–65. 
  5. ^ Dale HH, Laidlaw PP (1911). "Further observations on the action of beta-iminazolylethylamine". J. Physiol. (Lond.) 43 (2): 182–95.  
  6. ^ Frank E, Nothmann M, Wagner A (1926). "über Synthetisch Dargestellte Körper mit Insulinartiger Wirkung Auf den Normalen und Diabetischen Organismus". Klinische Wochenschrift (in German) 5 (45): 2100–2107.  
  7. ^ Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994). "Agmatine: an endogenous clonidine-displacing substance in the brain". Science 263 (5149): 966–9.  
  8. ^ a b c Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013). "Agmatine: clinical applications after 100 years in translation". Drug Discov. Today 18 (17-18): 880–93.  
  9. ^ Demady DR, Jianmongkol S, Vuletich JL, Bender AT, Osawa Y (2001). "Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme". Molecular Pharmacology 59 (1): 24–9.  
  10. ^ Taksande BG, Kotagale NR, Nakhate KT, Mali PD, Kokare DM, Hirani K, Subhedar NK, Chopde CT, Ugale RR (2011). "Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide Y". Br. J. Pharmacol. 164 (2b): 704–18.  
  11. ^ Gilad GM, Gilad VH (2013). "Evidence for oral agmatine sulfate safety--a 95-day high dosage pilot study with rats". Food Chem. Toxicol. 62: 758–62.  
  12. ^ Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, Nissim I, Yudkoff M (2014). "The molecular and metabolic influence of long term agmatine consumption". J. Biol. Chem. 289 (14): 9710–29.  
  13. ^ Haenisch B, von Kügelgen I, Bönisch H, Göthert M, Sauerbruch T, Schepke M, Marklein G, Höfling K, Schröder D, Molderings GJ (2008). "Regulatory mechanisms underlying agmatine homeostasis in humans". Am. J. Physiol. Gastrointest. Liver Physiol. 295 (5): G1104–10.  
  14. ^ Huisman H, Wynveen P, Nichkova M, Kellermann G (2010). "Novel ELISAs for screening of the biogenic amines GABA, glycine, beta-phenylethylamine, agmatine, and taurine using one derivatization procedure of whole urine samples". Anal. Chem. 82 (15): 6526–33.  
  15. ^ Halaris A, Plietz J (2007). "Agmatine : metabolic pathway and spectrum of activity in brain.". CNS Drugs 21 (11): 885–900.  
  16. ^ Raasch W, Schäfer U, Chun J, Dominiak P (2001). "Biological significance of agmatine, an endogenous ligand at imidazoline binding sites". Br. J. Pharmacol. 133 (6): 755–80.  
  17. ^ Satriano J (2004). "Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article". Amino Acids 26 (4): 321–9.  
  18. ^ Su RB, Li J, Qin BY (July 2003). "A biphasic opioid function modulator: agmatine" (PDF). Acta Pharmacol. Sin. 24 (7): 631–6.  

Further reading

  • Wilcox, G.; Fiska, A.; Haugan, F.; Svendsen, F.; Rygh, L.; Tjolsen, A.; Hole, K. (2004). "Central sensitization: The endogenous NMDA antagonist and NOS inhibitor agmatine inhibits spinal long term potentiation (LTP)". The Journal of Pain 5 (3): S19.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.