World Library  
Flag as Inappropriate
Email this Article

Alpha-Ketoglutaric acid

Article Id: WHEBN0000017322
Reproduction Date:

Title: Alpha-Ketoglutaric acid  
Author: World Heritage Encyclopedia
Language: English
Subject: Glutamic acid, Phenylalanine hydroxylase, Lysine, Arginine alphaketoglutarate, Cholesterol 7 alpha-hydroxylase
Publisher: World Heritage Encyclopedia

Alpha-Ketoglutaric acid

α-Ketoglutaric acid[1]
CAS number  YesY
ChemSpider  YesY
Jmol-3D images Image 1
Molecular formula C5H6O5
Molar mass 146.11 g/mol
Melting point 115 °C (239 °F; 388 K)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N   YesY/N?)

α-Ketoglutaric acid is one of two ketone derivatives of glutaric acid. (The term "ketoglutaric acid," when not further qualified, almost always refers to the alpha variant. β-Ketoglutaric acid varies only by the position of the ketone functional group, and is much less common.)

Its anion, α-ketoglutarate (α-KG, also called oxo-glutarate) is an important biological compound. It is the keto acid produced by deamination of glutamate, and is an intermediate in the Krebs cycle.


Krebs cycle

α-Ketoglutarate is a key intermediate in the Krebs cycle, coming after isocitrate and before succinyl CoA. Anaplerotic reactions can replenish the cycle at this juncture by synthesizing α-ketoglutarate from transamination of glutamate, or through action of glutamate dehydrogenase on glutamate.

Formation of amino acids

Glutamine is synthesized from glutamate by glutamine synthetase, which utilizes an ATP to form glutamyl phosphate; this intermediate is attacked by ammonia as a nucleophile giving glutamine and inorganic phosphate.

Nitrogen transporter

Another function is to combine with nitrogen released in the cell, therefore preventing nitrogen overload.

α-Ketoglutarate is one of the most important nitrogen transporters in metabolic pathways. The amino groups of amino acids are attached to it (by transamination) and carried to the liver where the urea cycle takes place.

α-Ketoglutarate is transaminated, along with glutamine, to form the excitatory neurotransmitter glutamate. Glutamate can then be decarboxylated (requiring vitamin B6) into the inhibitory neurotransmitter GABA.

It is reported that high ammonia and/or high nitrogen levels may occur with high protein intake, excessive aluminum exposure, Reye's syndrome, cirrhosis, and urea cycle disorder.

It plays a role in detoxification of ammonia in brain.[2][3][4]

Relationship to molecular oxygen

Acting as a co-substrate, it also plays important function in oxidation reactions involving molecular oxygen.

Molecular oxygen (O2) directly antibiotics, etc., in reactions catalyzed by oxygenases. In many oxygenases, α-ketoglutarate helps the reaction by being oxidized together with the main substrate. In fact, one of the α-ketoglutarate-dependent oxygenases is an O2 sensor, informing the organism the oxygen level in its environment.

In combination with molecular oxygen, alpha-ketoglutarate is one of the requirements for the hydroxylation of proline to hydroxyproline in the production of Type 1 Collagen.


α-Ketoglutarate, which is known to be released by several cell types, decreased the levels of hydrogen peroxide, and the α-ketoglutarate was depleted and converted to succinate in cell culture media.[5]


A study released on May 14, 2014 links α-ketoglutarate with significantly increased lifespan in nematode worms. [6]


α-Ketoglutarate can be produced by:

Alpha-ketoglutarate can be used to produce:

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

}px; border:solid #ccc 1px; background-color:white;">
|}px|alt=TCA Cycle edit|]]
TCA Cycle edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "TCACycle_WP78". 


  1. ^ Merck Index, 13th Edition, 5320.
  2. ^ Does infectious fever relieve autistic behavior by releasing glutamine from skeletal muscles as provisional fuel?
  3. ^ Ott, P; Clemmesen, O; Larsen, FS (Jul 2005). "Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis.". Neurochemistry international 47 (1-2): 13–8.  
  4. ^ Hares, P; James, IM; Pearson, RM (May–Jun 1978). "Effect of ornithine alpha ketoglutarate (OAKG) on the response of brain metabolism to hypoxia in the dog.". Stroke; a journal of cerebral circulation 9 (3): 222–4.  
  5. ^ Long, L; Halliwell, B (2011). "Artefacts in cell culture: α-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media.". Biochemical and biophysical research communications 406 (1): 20–24.  
  6. ^ [1], nature
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.