World Library  
Flag as Inappropriate
Email this Article

John Goodenough

Article Id: WHEBN0004388101
Reproduction Date:

Title: John Goodenough  
Author: World Heritage Encyclopedia
Language: English
Subject: Lithium-ion battery, List of National Medal of Science laureates
Publisher: World Heritage Encyclopedia

John Goodenough

John B. Goodenough
Born (1922-07-25) July 25, 1922 (age 92)
Jena, Germany
Residence Texas, United States
Nationality American
Fields Physics
Institutions Massachusetts Institute of Technology
Oxford University
University of Texas at Austin
Alma mater Yale University
University of Chicago
Doctoral advisor Clarence Zener
Known for Li-ion rechargeable battery, Goodenough-Kanamori rules
Notable awards National Medal of Science

John Bannister Goodenough (born of U. S. parents in Jena, Germany, 25 July 1922) is an American professor and prominent solid-state physicist. He is currently a professor of mechanical engineering and materials science at the University of Texas at Austin. He is widely credited for the identification and development of the Li-ion rechargeable battery as well as for developing the Goodenough-Kanamori rules for determining the sign of the magnetic superexchange in materials.


Goodenough received a B.S. in Mathematics from Yale University in 1944, where he was a member of Skull and Bones.[1] After serving overseas in World War II, he returned to complete a Ph.D. in Physics under the supervision of Clarence Zener at the University of Chicago in 1952.

Early Career at Lincoln Laboratories

During his early career, he was a research scientist at MIT's Lincoln Laboratory. During this time he was part of an interdisciplinary team responsible for developing random access magnetic memory. His research efforts on RAM led him to develop the concepts of cooperative orbital ordering, also known as a cooperative Jahn-Teller distortion, in oxide materials, and subsequently led to his developing the rules for the sign of the magnetic superexchange in materials, now known as the Goodenough-Kanamori rules.

Tenure at Oxford University

During the late 70s and early 80s, he continued his career as head of the Inorganic Chemistry Laboratory at Oxford University, where he identified and developed LixCoO2 as the cathode material of choice for the Li-ion rechargeable battery that is now ubiquitous in today's portable electronic devices. Although Sony is responsible for the commercialization of the technology, he is widely credited for its original identification and development. He received the Japan Prize in 2001 for his discoveries of the materials critical to the development of lightweight rechargeable batteries.

Professorship at University of Texas at Austin

Since 1986, he has been a Professor at the University of Texas at Austin in the departments of Mechanical Engineering and Electrical Engineering.[2] During his tenure there, he has continued his research on ionic conducting solids and electrochemical devices. His group has identified LixFePO4 as a less costly cathode material that is safe for power applications such as machine tools and Hybrid electric vehicles. His group has also identified various promising electrode and electrolyte materials for solid oxide fuel cells. He currently holds the Virginia H. Cockrell Centennial Chair in Engineering.

Fundamental Investigations throughout his career

On the fundamental side, his research has focused on magnetism (e.g. the Goodenough-Kanamori rules) and on the transition from magnetic-insulator to metallic behavior in transition-metal oxides. On the basis of the Virial Theorem, he recognized that this transition should be first-order and should, where the phase transition occurs at too low a temperature for atomic diffusion, result in lattice instabilities. At this crossover, these instabilities lead to charge-density waves in single-valent oxides and to phase-fluctuations in mixed-valent oxides. The phase fluctuations are responsible for such unusual physical properties as high-temperature superconductivity in copper oxides and a colossal magnetoresistance in manganese and cobalt oxides.


Professor Goodenough is a member of the National Academy of Engineering, the National Academy of Sciences, French Academy of Sciences, and the Real Academia de Ciencias Exactas, Físicas y Naturales of Spain. He has authored more than 550 articles, 85 book chapters and reviews, and five books, including two seminal works, Magnetism and the Chemical Bond (1963) and Les oxydes des metaux de transition (1973). Goodenough is a co-recipient of the 2009 Enrico Fermi Award. This presidential award is one of the oldest and most prestigious given by the U.S. government and carries an honorarium of $375,000. He shares the honor with Dr. Siegfried S. Hecker, professor at the Management Science and Engineering Department of Stanford University. In 2010 he was elected a Foreign Member of the Royal Society.[3] On February 1, 2013, Goodenough was presented with the National Medal of Science.[4]


  • Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X. & J. B. Goodenough. National Science Foundation, (September 1990).
  • Argyriou, D. N.; Mitchell, J. F.; Chmaissem, O.; Short, S.; Jorgensen, J. D. & J. B. Goodenough. National Science Foundation, Welch Foundation, (March 1997).
  • Goodenough, J. B.; Abruna, H. D. & M. V. Buchanan. United States Department of Energy, (April 4, 2007).
  • Goodenough, John B. Communications of the ACM 18.12 (1975): 683-696.

See also


  • University of Texas, Austin, TX (March 6, 2007). (Interview).

External links

  • United States Department of Energy
  • Array of Contemporary American Physicists
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.