World Library  
Flag as Inappropriate
Email this Article

Scalar-vector-tensor decomposition

Article Id: WHEBN0003998066
Reproduction Date:

Title: Scalar-vector-tensor decomposition  
Author: World Heritage Encyclopedia
Language: English
Subject: Newtonian gauge, Index of physics articles (S), Physical cosmology
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Scalar-vector-tensor decomposition

In cosmological perturbation theory, the scalar-vector-tensor decomposition is a decomposition of the most general linearized perturbations of the Friedmann–Lemaître–Robertson–Walker metric into components according to their transformations under spatial rotations. It was first discovered by E. M. Lifshitz in 1946. It follows from Helmholtz's Theorem (see Helmholtz decomposition.) The general metric perturbation has ten degrees of freedom. The decomposition states that the evolution equations for the most general linearized perturbations of the Friedmann–Lemaître–Robertson–Walker metric can be decomposed into four scalars, two divergence-free spatial vector fields (that is, with a spatial index running from 1 to 3), and a traceless, symmetric spatial tensor field with vanishing doubly and singly longitudinal components. The vector and tensor fields each have two independent components, so this decomposition encodes all ten degrees of freedom in the general metric perturbation. Using gauge invariance four of these components (two scalars and a vector field) may be set to zero.

If the perturbed metric g'_{\mu\nu}=g_{\mu\nu}+h_{\mu\nu} where h_{\mu\nu} is the perturbation, then the decomposition is as follows,

h_{00}=-2\psi
h_{0i}=w_i
h_{ij}=2(\phi g_{ij}+S_{ij})

where the Latin indices i and j run over spatial components (1,…,3). The tensor field S_{ij} is traceless under the spatial part of the background metric g_{ij} (i.e. g^{ij}S_{ij}=0). The spatial vector w_i and tensor S_{ij} undergo further decomposition. The vector is written

w_i=w^{||}{}_i+w^{\perp}{}_i,

where \nabla\times\mathbf{w}^{||}=\mathbf{0} and \nabla\cdot\mathbf{w}^{\perp}=0 (\nabla_i is the covariant derivative defined with respect to the spatial metric g_{ij}). The notation is used because in Fourier space, these equations indicate that the vector points parallel and perpendicular to the direction of the wavevector, respectively. The parallel component can be expressed as the gradient of a scalar, w^{||}{}_i=\nabla_iA. Thus \mathbf{w} can be written as a combination of a scalar and a divergenceless, two-component vector.

Finally, an analogous decomposition can be performed on the traceless tensor field S_{ij}. It can be written

S_{ij}=S^{||}{}_{ij}+S^{\perp}_{ij}+S^T{}_{ij},

where

S^{||}{}_{ij}=(\nabla_i\nabla_j-\frac{1}{3}g_{ij}\nabla^2)B,

where B is a scalar (the combination of derivatives is set by the condition that S be traceless), and

S^\perp{}_{ij}=\nabla_iS^\perp{}_j+\nabla_jS^\perp{}_i,

where S^\perp{}_i is a divergenceless spatial vector. This leaves only two independent components of S^T{}_{ij}, corresponding to the two polarizations of gravitational waves. (Since the graviton is massless, the two polarizations are orthogonal to the direction of propagation, just like the photon.)

The advantage of this formulation is that the scalar, vector and tensor evolution equations are decoupled. In representation theory, this corresponds to decomposing perturbations under the group of spatial rotations. Two scalar components and one vector component can further be eliminated by gauge transformations. However, the vector components are generally ignored, as there are few known physical processes in which they can be generated. As indicated above, the tensor components correspond to gravitational waves. The tensor S^T{}_{ij} is gauge invariant: it does not change under infinitesimal coordinate transformations.

See also

References

  • E. Bertschinger (2001). "Cosmological perturbation theory and structure formation".  
  • E. M. Lifshitz (1946). "On the gravitational stability of the expanding universe". J. Phys. USSR 10: 116. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.