World Library  
Flag as Inappropriate
Email this Article

Stochastic search

Article Id: WHEBN0022548662
Reproduction Date:

Title: Stochastic search  
Author: World Heritage Encyclopedia
Language: English
Subject: Swarm intelligence, Metaheuristic
Publisher: World Heritage Encyclopedia

Stochastic search

This article is about iterative methods. For the modeling (and optimization) of decisions under uncertainty, see stochastic programming.

Stochastic optimization (SO) methods are optimization methods that generate and use random variables. For stochastic problems, the random variables appear in the formulation of the optimization problem itself, which involve random objective functions or random constraints, for example. Stochastic optimization methods also include methods with random iterates. Some stochastic optimization methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization.[1] Stochastic optimization methods generalize deterministic methods for deterministic problems.

Methods for stochastic functions

Partly random input data arise in such areas as real-time estimation and control, simulation-based optimization where Monte Carlo simulations are run as estimates of an actual system,[2] [3] and problems where there is experimental (random) error in the measurements of the criterion. In such cases, knowledge that the function values are contaminated by random "noise" leads naturally to algorithms that use statistical inference tools to estimate the "true" values of the function and/or make statistically optimal decisions about the next steps. Methods of this class include

Randomized search methods

On the other hand, even when the data set consists of precise measurements, some methods introduce randomness into the search-process to accelerate progress.[7] Such randomness can also make the method less sensitive to modeling errors. Further, the injected randomness may enable the method to escape a local minimum and eventually to approach a global optimum. Indeed, this randomization principle is known to be a simple and effective way to obtain algorithms with almost certain good performance uniformly across many data sets, for many sorts of problems. Stochastic optimization methods of this kind include:

See also


  • Michalewicz, Z. and Fogel, D. B. (2000), How to Solve It: Modern Heuristics, Springer-Verlag, New York.

External links

  • COSP


  • AIMMS (AIMMS), commercial
  • FortSP), commercial
  • commercial add-on for stochastic programming and optimization
  • SPInE, commercial
  • XPRESS-SP, commercial
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.