 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Tomographic reconstruction

Article Id: WHEBN0000995908
Reproduction Date:

 Title: Tomographic reconstruction Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Tomographic reconstruction

The mathematical basis for tomographic imaging was laid down by Johann Radon. It is applied in Computed Tomography to obtain cross-sectional images of patients. This article applies in general to tomographic reconstruction for all kinds of tomography, but some of the terms and physical descriptions refer directly to X-ray computed tomography. Figure 1: Parallel beam geometry. Each projection is made up of the set of line integrals through the object.

The projection of an object at a given angle \theta is made up of a set of line integrals. In X-ray CT, the line integral represents the total attenuation of the beam of x-rays as it travels in a straight line through the object. As mentioned above, the resulting image is a 2D (or 3D) model of the attenuation coefficient. That is, we wish to find the image \mu(x,y). The simplest and easiest way to visualise the method of scanning is the system of parallel projection, as used in the first scanners. For this discussion we consider the data to be collected as a series of parallel rays, at position r, across a projection at angle \theta. This is repeated for various angles. Attenuation occurs exponentially in tissue:

I = I_0\exp\left({-\int\mu(x,y)\,ds}\right)

where \mu(x) is the attenuation coefficient at position x along the ray path. Therefore generally the total attenuation p of a ray at position r, on the projection at angle \theta, is given by the line integral:

p(r,\theta) = \ln (I/I_0) = -\int\mu(x,y)\,ds Projected X-rays are clearly visible on this slice taken with a CT-scan

Using the coordinate system of Figure 1, the value of r onto which the point (x,y) will be projected at angle \theta is given by:

x\cos\theta + y\sin\theta = r\

So the equation above can be rewritten as

p(r,\theta)=\int^\infty_{-\infty}\int^\infty_{-\infty}f(x,y)\delta(x\cos\theta+y\sin\theta-r)\,dx\,dy

where f(x,y) represents \mu(x,y). This function is known as the Radon transform (or sinogram) of the 2D object. The projection-slice theorem tells us that if we had an infinite number of one-dimensional projections of an object taken at an infinite number of angles, we could perfectly reconstruct the original object, f(x,y). So to get f(x,y) back, from the above equation means finding the inverse Radon transform. It is possible to find an explicit formula for the inverse Radon transform. However, the inverse Radon transform proves to be extremely unstable with respect to noisy data. In practice, a stabilized and discretized version of the inverse Radon transform is used, known as the filtered back projection algorithm. Recent developments have seen the Radon transform and its inverse used for tasks related to realistic object insertion required for testing and evaluating Computed Tomography use in Airport Security.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.