World Library  
Flag as Inappropriate
Email this Article

Vasomotion

Article Id: WHEBN0020937408
Reproduction Date:

Title: Vasomotion  
Author: World Heritage Encyclopedia
Language: English
Subject:
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Vasomotion

Vasomotion is the spontaneous oscillation in tone of blood vessels, independent of heart beat, innervation or respiration.[1] While vasomotion was first observed by Jones in 1852, the complete mechanisms responsible for its generation and its physiological importance remain to be elucidated, however several hypotheses have been put forth.[2]

Mechanism

Intracellular calcium (Ca2+) concentration exhibits periodic oscillations in vascular smooth muscle cells. This is thought to result from Ca2+ release from intracellular stores, due to inositol triphosphate and ryanodine-sensitive channel activation. This activation has been shown to result in either Ca2+ "sparks", highly localized calcium increases, or "waves", global Ca2+ increase that propagates the length of the cell.[3]

To allow vasomotion to occur, synchronization must occur between the individual oscillations, resulting in global calcium synchronization and vessel tone oscillation.[4] Gap junctions are thought to play a large role in this synchronization, as application of gap junction blockers has been shown to abolish vasomotion, indicating a critical role.[5] Due to regional variations in gap junction distribution and coupling (homocellular vs. heterocellular) several hypotheses have been suggested to account for vasomotion occurrence.

The "classic" mechanism of vasomotion generation is thought to be the voltage-dependent coupled model.[4] In this model, high gap junction coupling is present between the vascular smooth muscle cells, the endothelial cells and the endothelial to vascular smooth muscle cells. An initial depolarizing current leads to the opening of the voltage-dependent calcium channels, ultimately resulting in synchronization of individual calcium levels. When patch clamp recordings are conducted, depolarization occurs in the endothlial layer at the same time as the underlying vascular smooth muscle. The cause of the initial depolarizing current, however, remains to be determined. Mathematical modeling has pointed to the existence of 2-4 independent non-linear oscillating systems interacting to produce vasomotion.[6] It is possible that in order for vasomotion to be generated, these systems must pass a depolarizing threshold.

Physiological role

Several possible hypotheses have been advanced to explain vasomotion. Increased flow is one possibility; mathematical modeling has shown a vessel with an oscillating diameter to conduct more flow then a vessel with a static diameter.[7] Vasomotion could also be a mechanism of increasing the reactivity of a blood vessel by avoiding the "latch state", a low ATP cycling state of prolonged force generation common in vascular smooth muscle. Finally, vasomotion has been shown to be altered in a variety of pathological situations, with vessels from both hypertensive and diabetic patients displaying altered flow patterns as compared to normotensive vessels.[8]

References

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.