World Library  
Flag as Inappropriate
Email this Article

Agm-88 Harm

Article Id: WHEBN0000003149
Reproduction Date:

Title: Agm-88 Harm  
Author: World Heritage Encyclopedia
Language: English
Subject: General Dynamics F-16 Fighting Falcon variants, Anti-radiation missile, AGM-63, Texas Instruments, Northrop BQM-74 Chukar
Publisher: World Heritage Encyclopedia

Agm-88 Harm

AGM-88 HARM[1]
An AGM-88 HARM missile loaded aboard an F/A-18C
Type Air-to-surface anti-radiation missile
Place of origin United States
Service history
In service 1985–present
Used by U.S. and others
Wars Gulf War, Kosovo War, Iraq War, 2011 military intervention in Libya
Production history
Designer Texas Instruments
Designed 1983
Manufacturer Texas Instruments, then Raytheon Corporation
Unit cost US$284,000
US$870,000 for AGM-88E[2]
Produced 1983–present
Weight 355 kilograms (783 lb)
Length 4.1 metres (13 ft)
Diameter 254 millimetres (10.0 in)
Warhead WDU-21/B blast-fragmentation in a WAU-7/B warhead section, and later WDU-37/B blast-fragmentation warhead.
Warhead weight 66 kilograms (146 lb)
FMU-111/B laser proximity fuze

Engine Thiokol SR113-TC-1 dual-thrust rocket engine
Wingspan 1.1 metres (3.6 ft)
Propellant Solid fuel
150 kilometres; 92 miles (80 nmi)[3]
Speed 2,280 km/h (1,420 mph)
Passive radar homing with home-on-jam, GPS/INS and millimeter wave active radar homing in E variant.[4] 500-20,000 MHz for AGM-88C
F/A-18, F-4G, F-16, Tornado IDS, F-35 and others

The AGM-88 High-speed Anti-Radiation Missile (HARM) is a tactical, air-to-surface missile designed to home in on electronic transmissions coming from surface-to-air radar systems. It was originally developed by Texas Instruments as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation when it purchased the defense production business of Texas Instruments.


The AGM-88 can detect, attack and destroy a radar antenna or transmitter with minimal aircrew input. The proportional guidance system that homes in on enemy radar emissions has a fixed antenna and seeker head in the missile's nose. A smokeless, solid-propellant, booster-sustainer rocket motor propels the missile at speeds over Mach 2. HARM, a U.S. Navy-led program, was initially integrated onto the A-6E, A-7 and F/A-18 and later onto the EA-6B. RDT&E for use on the F-14 was begun, but not completed. The USAF introduced HARM on the F-4G Wild Weasel and later on specialized F-16s equipped with the HARM Targeting System (HTS).



The HARM missile was approved for full production in March 1983, and then deployed in late 1985 with VA-72 and VA-46 aboard the aircraft carrier USS America. In 1986 the first successful firing of the HARM from an EA-6B was performed by VAQ-131. It was soon used in combat—in March 1986 against a Libyan SA-5 site in the Gulf of Sidra, and then Operation Eldorado Canyon in April. HARM was used extensively by the United States Navy and the United States Air Force for Operation Desert Storm during the Gulf War of 1991.

During the Gulf War, the HARM was involved in a friendly fire incident when the pilot of an F-4G Wild Weasel escorting a B-52 bomber mistook the latter's tail gun radar for an Iraqi AAA site. (This was after the tail gunner of the B-52 had targeted the F-4G, mistaking it for an Iraqi MiG.) The F-4 pilot launched the missile and then saw that the target was the B-52, which was hit. It survived with shrapnel damage to the tail and no casualties. The B-52 was subsequently renamed In HARM's Way.[5]

"Magnum" is spoken over the radio to announce the launch of an AGM-88.[6] During the Gulf War, if an aircraft was illuminated by enemy radar a bogus "Magnum" call on the radio was often enough to convince the operators to power down.[7] This technique would also be employed in Serbia during air operations in 1999.

In 2013 President Obama offered the AGM-88 to Israel for the first time.[8]



The newest upgrade, the AGM-88E Advanced Anti-Radiation Guided Missile (AARGM), features the latest software, enhanced capabilities intended to counter radar shutdown and passive radar using an additional active millimeter wave seeker. It was released in November 2010 and is a joint venture by the US Department of Defense and the Italian Ministry of Defense and is produced by Alliant Techsystems.

In November 2005, the Italian Ministry of Defense and the US Department of Defense signed a Memorandum of Agreement on the joint development of the AGM-88E AARGM missile. Italy was providing $20 million of developmental funding as well as several millions worth material, equipment and related services. The Italian Air Force was expected to procure up to 250 missiles for its Tornado ECR aircraft. Thus flight test program was set to integrate the AARGM onto Tornado ECR's weapon system.
The Navy demonstrated the AARGM's capability during Initial Operational Test and Evaluation (IOT&E) in spring 2012 with live firing of 12 missiles. Aircrew and maintenance training with live missiles was completed in June.
Lot 1
"ATK Defense Electronics Systems in Woodland Hills, CA receives a $70.6 million firm-fixed-price contract for AARGM Full Rate Production Lot 1. ATK will convert 53 AGM-88B HARM missiles provided by the US government, turning them into 49 AGM-88E AARGM All-Up Rounds for the US Navy, and 4 missiles for Italy. ATK will also provide 23 AGM-88E Captive Air Training Missile systems for the US Navy, which have seekers but no rocket motors, along with all related supplies and services.
Work will be performed in Woodland Hills, CA (90%); various locations in Italy (8.1%); Ridgecrest, CA (1.7%), and Clearwater, FL (0.2%), and is expected to be complete in December 2012. This contract was not competitively procured pursuant to FAR 6.302-1. This contract combines purchases for the Navy ($65.0M / 92.06%) and the Government of Italy ($5.6M / 7.94%). US Naval Air Systems Command, Patuxent River, MD manages the contract (N00019-12-C-0113)"
Lot 2
The Navy authorized Full-Rate Production (FRP) of the AARGM in August 2012, with 72 missiles for the Navy and nine for the Italian Air Force to be delivered in 2013. A U.S. Marine Corps F/A-18 Hornet squadron will be the first forward-deployed unit with the AGM-88E.[9]
Lot 4
On September 3, 2015 U.S. Department of Defence noticed order to Alliant Techsystems Operations LLC, Defense Electronic Systems, California, for a $118,724,146 firm-fixed-price contract, to Full Rate Production Lot 4 procurement of the Advanced Anti-Radiation Guided Missile (AARGM) services for the U.S. Navy and the Governments of Australia and Italy, to include conversion of AGM-88B High-Speed Anti-Radiation Missiles to 142 AGM-88E All-Up-Rounds and 12 Captive Air Training Missiles, to include related supplies.[10]

In September 2013, ATK delivered the 100th AARGM to the U.S. Navy. The AGM-88E program is on schedule and on budget, with Full Operational Capability (FOC) planned for September 2014.[11]

It will be initially integrated onto the F/A-18C/D, F/A-18E/F, EA-18G, and Tornado ECR aircraft and later on the F-35.[12]

The Navy's FY 2016 budget included funding for an extended range AARGM-ER that utilizes the existing guidance system and warhead of the AGM-88E with a solid integrated rocket-ramjet for double the range. Development funding will last to 2020.[13]

In September 2015, the AGM-88E successfully hit a mobile ship target in a live-fire test, demonstrating the missile's ability to use anti-radiation homing and millimeter wave radar to detect, identify, locate, and engage moving targets.[14]


Map with AGM-88 operators in blue
F-16 carrying an AIM-120 AMRAAM (top), AIM-9 Sidewinder (middle) and AGM-88 HARM

Current operators

See also


  1. ^
  2. ^ AGM-88E AARGM / Advanced Anti-Radiation Guided Missile, HDAM
  3. ^ Raytheon Company: Miniature Air Launched Decoy (MALD)
  4. ^ AGM-88E Advanced Anti-Radiation Guided Missile | NAVAIR - U.S. Navy Naval Air Systems Command - Navy and Marine Corps Aviation Research, Development, Acquisition, Test and Eva...
  5. ^
  6. ^
  7. ^
  8. ^ "Israel seeks $5B in U.S. loans to buy arms."
  9. ^ Navy Approves Full Rate Production for New Anti-Radiation Missile -, August 30, 2012
  10. ^
  11. ^ ATK Delivers 100th Advanced Anti-Radiation Guided Missile (AARGM) to U.S. Navy -, 17 September 2013
  12. ^
  13. ^ F-35Cs Cut Back As U.S. Navy Invests In Standoff Weapons -, 3 February 2015
  14. ^ U.S. Navy tests upgraded missile -, 23 September 2015
  15. ^
  16. ^ a b
  17. ^

External links

  • AGM-88 data sheet (PDF format) from Raytheon
  • Information on AGM-88 HARM from FAS
  • AGM-88 HARM information by
  • AGM-88@Designation-Systems
  • AGM-88 HARM by Carlo Kopp
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.