World Library  
Flag as Inappropriate
Email this Article

Backscatter

Article Id: WHEBN0000863668
Reproduction Date:

Title: Backscatter  
Author: World Heritage Encyclopedia
Language: English
Subject: Everhart-Thornley detector, Radar display, Scanning electron microscope, Sea ice concentration, Luna 13
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Backscatter

In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is a diffuse reflection due to scattering, as opposed to specular reflection like a mirror. Backscattering has important applications in astronomy, photography and medical ultrasonography.

Backscatter of waves in physical space

Backscattering can occur in quite different physical situations, where the incoming waves or particles are deflected from their original direction by different mechanisms:

Sometimes, the scattering is more or less isotropic, i. e. the incoming particles are scattered randomly in various directions, with no particular preference for backward scattering. In these cases, the term "backscattering" just designates the detector location chosen for some practical reasons:

  • in X-ray imaging, backscattering means just the opposite of transmission imaging;
  • in inelastic neutron or X-ray spectroscopy, backscattering geometry is chosen because it optimizes the energy resolution;
  • in astronomy, backscattered light is that which is reflected with a phase angle of less than 90°.

In other cases, the scattering intensity is enhanced in backward direction. This can have different reasons:

Radar, especially weather radar

Backscattering is the principle behind radar systems.

In weather radar, backscattering is proportional to the 6th power of the diameter of the target multiplied by its inherent reflective properties. Water is almost 4 times more reflective than ice but droplets are much smaller than snow flakes or hail stones. So the backscattering is dependent on a mix of these two factors. The strongest backscatter comes from hail and large graupel (solid ice) due to their sizes. Another strong return is from melting snow or wet sleet, as they combine size and water reflectivity. They often show up as much higher rates of precipitation than actually occurring in what is called a brightband. Rain is a moderate backscatter, being stronger with large drops (such as from a thunderstorm) and much weaker with small droplets (such as mist or drizzle). Snow has rather weak backscatter.

Backscatter in waveguides

The backscattering method is also employed in fiber optics applications to detect optical faults. Light propagating through a fiber optic cable gradually attenuates due to Rayleigh scattering. Faults are thus detected by monitoring the variation of part of the Rayleigh backscattered light. Since the backscattered light attenuates exponentially as it travels along the optical fiber cable, the attenuation characteristic is represented in a logarithmic scale graph. If the slope of the graph is steep, then power loss is high. If the slope is gentle, then optical fiber has a satisfactory loss characteristic.

The loss measurement by the backscattering method allows measurement of a fiber optic cable at one end without cutting the optical fiber hence it can be conveniently used for the construction and maintenance of optical fibers.

Backscatter in photography

The term backscatter in photography refers to light from a flash or strobe reflecting back from particles in the lens's field of view causing specks of light to appear in the photo. This gives rise to what are sometimes referred to as orb artifacts. Photographic backscatter can result from snowflakes, rain or mist, or airborne dust. Due to the size limitations of the modern compact and ultra-compact cameras, especially digital cameras, the distance between the lens and the built-in flash has decreased, thereby decreasing the angle of light reflection to the lens and increasing the likelihood of light reflection off normally sub-visible particles. Hence, the orb artifact is commonplace with small digital or film camera photographs[1]

See also

References

  1. ^ "'"The Truth Behind 'Orbs. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.