World Library  
Flag as Inappropriate
Email this Article

Cell-transitive

Article Id: WHEBN0018369868
Reproduction Date:

Title: Cell-transitive  
Author: World Heritage Encyclopedia
Language: English
Subject: Polyhedral compound, Isotoxal figure
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cell-transitive

For the related Isohedral numbers, see Anisohedral tiling.

In geometry, a polytope (a polyhedron or a polychoron for example) or tiling is isohedral or face-transitive when all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. In other words, for any faces A and B, there must be a symmetry of the entire solid by rotations and reflections that maps A onto B. For this reason, convex isohedral polyhedra are the shapes that will make fair dice.

Isohedral polyhedra are called isohedra. They can be described by their face configuration. A form that is isohedral and has regular vertices is also edge-transitive (isotoxal) and is said to be a quasiregular dual: some theorists regard these figures as truly quasiregular because they share the same symmetries, but this is not generally accepted.

A polyhedron which is isohedral has a dual polyhedron that is vertex-transitive (isogonal). The Catalan solids, the bipyramids and the trapezohedra are all isohedral. They are the duals of the isogonal Archimedean solids, prisms and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex, edge, and face-transitive (isogonal, isotoxal, and isohedral). A polyhedron which is isohedral and isogonal is said to be noble.

Examples

nonregular example of an isohedral polyhedron. Cairo pentagonal tiling, V3.3.4.3.4 rhombic dodecahedral honeycomb is an example of an isohedral (and isochoric) space-filling honeycomb.

Related terms

A cell-transitive or isochoric figure is an n-polytope (n>3) or honeycomb that has its cells are congruent and transitive with each other.

A facet-transitive or isotopic figure is a n-dimensional polytopes or honeycomb, with its facets ((n-1)-faces) congruent and transitive. The dual of an isotope is an isogonal polytope. By definition, this isotopic property is common to the duals of the uniform polytopes.

  • An isotopic 2-dimensional figure is isotoxal (edge-transitive).
  • An isotopic 3-dimensional figure is isohedral (face-transitive).
  • An isotopic 4-dimensional figure is isochoric (cell-transitive).

See also

References

  • Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p. 367 Transitivity

External links

  • Isotope at Glossary for Hyperspace.
  • MathWorld.
  • MathWorld.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.