World Library  
Flag as Inappropriate
Email this Article

Condorcet's paradox

Article Id: WHEBN0000249125
Reproduction Date:

Title: Condorcet's paradox  
Author: World Heritage Encyclopedia
Language: English
Subject: Smith set, Condorcet's jury theorem, Condorcet (disambiguation), Girondin constitutional project
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Condorcet's paradox

This article is about the arguably irrational results that can arise in a collective choice among three or more alternatives. For the contention that an individual's vote will probably not affect the outcome, see Paradox of voting.

The voting paradox (also known as Condorcet's paradox or the paradox of voting) is a situation noted by the Marquis de Condorcet in the late 18th century, in which collective preferences can be cyclic (i.e. not transitive), even if the preferences of individual voters are not. This is paradoxical, because it means that majority wishes can be in conflict with each other. When this occurs, it is because the conflicting majorities are each made up of different groups of individuals.

For example, suppose we have three candidates, A, B, and C, and that there are three voters with preferences as follows (candidates being listed in decreasing order of preference):

Voter First preference Second preference Third preference
Voter 1 A B C
Voter 2 B C A
Voter 3 C A B

If C is chosen as the winner, it can be argued that B should win instead, since two voters (1 and 2) prefer B to C and only one voter (3) prefers C to B. However, by the same argument A is preferred to B, and C is preferred to A, by a margin of two to one on each occasion. The requirement of majority rule then provides no clear winner.

Also, if an election were held with the above three voters as the only participants, nobody would win under majority rule, as it would result in a three way tie with each candidate getting one vote.

When a Condorcet method is used to determine an election, a voting paradox among the ballots can mean that the election has no Condorcet winner. The several variants of the Condorcet method differ on how they resolve such ambiguities when they arise to determine a winner. Note that there is no fair and deterministic resolution to this trivial example because each candidate is in an exactly symmetrical situation.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.