World Library  
Flag as Inappropriate
Email this Article
 

Dextrorphan

Dextrorphan
Systematic (IUPAC) name
(+)-17-methyl-9a,13a,14a-morphinan-3-ol
Clinical data
Legal status
  • US: Unscheduled
Identifiers
CAS Registry Number  Y
ATC code None
PubChem CID:
ChemSpider  N
UNII  N
ChEMBL  N
Chemical data
Formula C17H23NO
Molecular mass 257.371 g/mol
 N   

Dextrorphan (DXO) is a psychoactive drug of the morphinan chemical class which acts as an antitussive or cough suppressant and dissociative hallucinogen. It is the dextrorotatory-stereoisomer of racemorphan, the levo-half being levorphanol. Dextrorphan is produced by O-demethylation of dextromethorphan by CYP2D6. Dextrorphan is an NMDA antagonist and contributes to the psychoactive effects of dextromethorphan.[1]

Contents

  • Pharmacology 1
  • Legality 2
  • See also 3
  • References 4

Pharmacology

The pharmacology of dextrorphan is similar to that of dextromethorphan (DXM). However, dextrorphan is much more potent as an NMDA receptor antagonist as well as essentially inactive as a serotonin reuptake inhibitor, but retains DXMs activity as a norepinephrine reuptake inhibitor.[11]

Legality

Dextrorphan was formerly a Schedule I controlled substance in the United States, but was unscheduled on October 1, 1976.[12]

See also

References

  1. ^ Zawertailo, L. A.; Kaplan, H. L.; Busto, U. E.; Tyndale, R. F.; Sellers, E. M. (Aug 1998). "Psychotropic Effects of Dextromethorphan are Altered by the CYP2D6 Polymorphism: A Pilot Study". Journal of Clinical Psychopharmacology 18 (4): 332–337.  
  2. ^ Wong, B. Y.; Coulter, D. A.; Choi, D. W.; Prince, D. A. (Feb 1988). "Dextrorphan and Dextromethorphan, Common Antitussives, are Antiepileptic and Antagonize N-Methyl-D-Aspartate in Brain Slices". Neuroscience Letters 85 (2): 261–266.  
  3. ^ Church, J.; Jones, M. G.; Davies, S. N.; Lodge, D. (Jun 1989). "Antitussive Agents as N-Methylaspartate Antagonists: Further Studies". Canadian Journal of Physiology and Pharmacology 67 (6): 561–567.  
  4. ^ a b Kamel, I. R.; Wendling, W. W.; Chen, D.; Wendling, K. S.; Harakal, C.; Carlsson, C. (Oct 2008). "N-Methyl-D-Aspartate (NMDA) Antagonists -- S(+)-Ketamine, Dextrorphan, and Dextromethorphan -- Act as Calcium Antagonists on Bovine Cerebral Arteries". Journal of Neurosurgical Anesthesiology 20 (4): 241–248.  
  5. ^ Richter, A.; Löscher, W. (Jan 1997). "Dextrorphan, but not Dextromethorphan, Exerts Weak Antidystonic Effects in Mutant Dystonic Hamsters". Brain Research 745 (1–2): 336–338.  
  6. ^ Chou, Y. C.; Liao, J. F.; Chang, W. Y.; Lin, M. F.; Chen, C. F. (Mar 1999). "Binding of Dimemorfan to Sigma-1 Receptor and its Anticonvulsant and Locomotor Effects in Mice, Compared with Dextromethorphan and Dextrorphan". Brain Research 821 (2): 516–519.  
  7. ^ Anna W. Sromek; Brian A. Provencher; Shayla Russell; Elena Chartoff; Brian I. Knapp; Jean M. Bidlack; John L. Neumeyer (January 2014). "Preliminary Pharmacological Evaluation of Enantiomeric Morphinans" (HTML). ACS Chemical Neuroscience 5(2). 
  8. ^ Damaj, M. I.; Flood, P.; Ho, K. K.; May, E. L.; Martin, B. R. (Feb 2005). "Effect of Dextrometorphan and Dextrorphan on Nicotine and Neuronal Nicotinic Receptors: in Vitro and in Vivo Selectivity" (pdf). The Journal of Pharmacology and Experimental Therapeutics 312 (2): 780–785.  
  9. ^ Hernandez, S. C.; Bertolino, M.; Xiao, Y.; Pringle, K. E.; Caruso, F. S.; Kellar, K. J. (2000). "Dextromethorphan and its Metabolite Dextrorphan Block alpha3beta4 Neuronal Nicotinic Receptors" (pdf). Journal of Pharmacology and Experimental Therapeutics 293 (3): 962–967.  
  10. ^ Kim, H. C.; Ko, K. H.; Kim, W. K.; Shin, E. J.; Kang, K. S.; Shin, C. Y.; Jhoo, W. K. (May 2001). "Effects of Dextromethorphan on the Seizures Induced by Kainate and the Calcium Channel Agonist BAY k-8644: Comparison with the Effects of Dextrorphan". Behavioural Brain Research 120 (2): 169–175.  
  11. ^ Pechnick, R. N.; Poland, R. E. (2004). "Comparison of the Effects of Dextromethorphan, Dextrorphan, and Levorphanol on the Hypothalamo-Pituitary-Adrenal Axis" (pdf). Journal of Pharmacology And Experimental Therapeutics 309 (2): 515–522.  
  12. ^ DEA. "Lists of: Scheduling Actions Controlled Substances Regulated Chemicals" (PDF). Retrieved 2010-09-24. 



This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.