EF-G or elongation factor G (historically known as translocase) is one of the prokaryotic elongation factors.
Function
The factor EF-G catalyzes the translocation of the tRNA and mRNA down the ribosome at the end of each round of polypeptide elongation. Homologous to EF-Tu + tRNA, EF-G also binds to the ribosome in its GTP-bound state. When it associates with the A site, EF-G causes the tRNA previously occupying that site to occupy an intermediate A/P position (bound to the A site of the small ribosomal subunit and to the P site of the large subunit), and the tRNA in the P site is shifted to a P/E hybrid state. EF-G hydrolysis of GTP causes a conformation change that forces the A/P tRNA to fully occupy the P site, the P/E tRNA to fully occupy the E site (and exit the ribosome complex), and the mRNA to shift three nucleotides down relative to the ribosome due to its association with these tRNA molecules. The GDP-bound EF-G molecule then dissociates from the complex, leaving another free A-site where the elongation cycle can start again.
Apart from its role in translocation, EF-G, working together with Ribosome Recycling Factor promotes ribosome recycling in a GTP-dependent manner.[1]
Clinical significance
It is normally inhibited by fusidic acid, but resistance has emerged.[2][3]
Evolution
EF-G has a complex evolutionary history, with numerous paralogous versions of the factor present in bacteria, suggesting subfunctionalization of different EF-G variants.[4]
References
External links
- Medical Subject Headings (MeSH)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.