World Library  
Flag as Inappropriate
Email this Article


Formation 1998/1999

The European Rail Traffic Management System (ERTMS) is an initiative backed by the European Union to enhance cross-border interoperability and the procurement of signalling equipment by creating a single Europe-wide standard for train control and command systems.

The two main components of ERTMS are the European Train Control System (ETCS), a standard for in-cab train control, and GSM-R, the GSM mobile communications standard for railway operations.[2] The equipment can further be subdivided between on-board and infrastructure equipment.


Companies developing ERTMS systems include UNIFE/UNISIG members Alstom, Thales, Invensys Rail Group, Ansaldo STS, Siemens Mobility, Bombardier Transportation and Eliop-Seinalia. Additionally, there are at least two new emerging suppliers, Czech and Japanese.



  • December: Zaragoza – Huesca High Speed line in Spain opens with ERTMS Level 1.[3]




  • June: The Betuweroute, a new cargo line with ERTMS Level 2 between the port of Rotterdam and the German border opens for commercial traffic.


  • On the Cambrian Line Network Rail install ERTMS In-Cab ETCS (European Train Control System) level 2, specification 2.3.0d This level does not require conventional fixed signals – existing signals and RETB boards will be removed. Additionally, the lineside speed signs will be redundant – drivers are given the appropriate maximum speed on the cab display. The main supplier was Ansaldo STS. Interfleet Technology Limited of Derby England were commissioned to carry out the design for the passenger rolling stock and subsequently managed the installation on site at LNWR, Crewe under contract to ASTS. During the design phase the key project stakeholders; Network Rail, Arriva Trains Wales and Angel Trains were all consulted to ensure the design was robust due to the criticality of the project, as the first installation of its kind in the UK. 24 Class 158 units were fitted as well as three Class 97/3 locomotives (formerly Classified as Class 37 and prior to that as the English Electric Type 3) to be used for piloting services. The Class 97/3 design and installation was provided by Transys Projects Limited of Birmingham England for Ansaldo STS. Commissioning will occur in 2010.


  • In July 2009, the European Commission announced that ETCS is now mandatory for all EU funded projects which include new or upgraded signalling and GSM-R is required when radio communications are upgraded.[5]
  • September: HSL-Zuid/HSL 4 opened to commercial traffic. It is a new 125-km long high-speed line between the Netherlands and Belgium that uses ERTMS Level 2 with a fallback option to ERTMS Level 1 (although restricted to 160 km/h in the Netherlands).
  • Autumn/Winter: opening of HS lines Novara-Milano and Bologna–Florence, thus completing the whole HS line Turin-Naples.[6]


  • Botniabanan in northern Sweden started operation with ERTMS in August.[8]
  • Start of operation of Cambrian Early Deployment Scheme (EDS) comprising 24 ERTMS fitted Class 158 units and 3 Class 97/3 locomotives.[9]
  • Start of the national roll-out of ERTMS in the United Kingdom.[10]
  • The Cambrian ERTMS – Pwllheli to Harlech Rehearsal commenced on 13 February 2010 and successfully finished on 18 February 2010. The driver familiarisation and practical handling stage of the Rehearsal has provided an excellent opportunity to monitor the use of GSM-R voice in operation on this route. The first train departed Pwllheli at 0853hrs in ERTMS Level 2 Operation with GSM-R voice being used as the only means of communication between the driver and the signaller.
  • New Zealand begins rolling out ERTMS together with new solid-state interlocking for electrification in Auckland[11] together with new resignalling in for electrification.
  • On West Dalarna Line in mid Sweden a demonstration run was made using ERTMS Regional, Level 3, in November.
  • Libya to install ERTMS[12]
  • September – new ERTMS logo adopted.
  • October: The Cambrian ERTMS – Pwllheli to Harlech commissioned for passenger carrying service under ERTMS level 2 without lineside signals.



  • 21 February: Full commissioning of West Dalarna Line (Repbäcken-Malung) in Dalarna, Sweden, under ERTMS level 3 without lineside signals or track detection devices.[14][15]
  • In April 2012 at the UIC ERTMS World Conference in Stockholm, Sweden, the Executive Director of the Community of European Railway and Infrastructure Companies (CER) called for an accelerated implementation of ERTMS in Europe.[16]
  • In May 2012, the Transport Administration in Sweden decided to delay the introduction of ERTMS into more Swedish railways a few years, because of the trouble on Botniabanan and Ådalsbanan railways, and unclear financing of rebuilding the rolling stock.[17]

ERTMS implementation strategies

Various railway signalling roll out strategies can be used for deployment of the European Rail Traffic Management System. With the introduction of ERTMS the infrastructure manager has to decide whether a line will be equipped only with ERTMS or whether a mixed signalling system is the better solution. Currently, both 'clean' and mixed systems are being deployed in Europe and around the world.[18]

'Clean' ERTMS operation

Many new ERTMS lines in Europe are being created and then it may often be preferred to implement ERTMS Level 1 or Level 2 only. With this implementation strategy the wayside signalling cost is kept to a minimum, but the vehicle fleet that operates on these lines will need to all be equipped with ERTMS on board to allow operation. This is more suitable for new high-speed passenger lines, where new vehicles will be bought, less suitable if long-distance freight trains shall use it. Examples of 'clean' ERTMS operation include HSL-Zuid in the Netherlands among others.

Mixed operation

Mixed operation is a strategy where the wayside signalling is equipped with both ERTMS and a conventional system. Often the conventional system is the legacy system used during the signalling upgrade program. The main purpose of introducing a mixed operation (mixed signalling system) are:

  • For financial and operational reasons, it is impossible to install ERTMS for the complete network in a short period.
  • Not every train is equipped to run on ERTMS lines and ERTMS-equipped trains cannot run only on new lines.
  • Having a fall-back solution minimises the risk to the operation.

With mixed operation it is possible to run a line with both conventional and ERTMS trains and to use the advantages of ERTMS technology for the trains so equipped (e.g. higher speed or more trains on the line) but with the benefit that it is not necessary to equip the whole train fleet with ERTMS simultaneously. Examples of ERTMS in mixed operation include HSL 3 in Belgium where ERTMS is mixed with national ATP system or High-Speed Line Cordoba-Malaga in Spain[19] where ERTMS is mixed with STM.

Operational principle of ERTMS in mixed operation: STM and ERTMS Level 2

The principle of mixed level signalling is based on simple principles using bi-directional data exchange between the radio block centre and the interlocking systems. The operator sets a route and does not need to know if the route will be used for a Level STM (LSTM) only or a Level 2-equipped train. A route is locked based on the national principles by the interlocking system and the RBC is informed about the routes set. The RBC checks whether it is possible to allocate a train to the route and then informs the interlocking system that a train is allocated to the route. The interlocking system shows the ERTMS white bar aspect to all signals along the route including the signal at the end of the route and sends no ATB-EG code to the track. The RBC sends a movement authority to the train if a Level 2 train is allocated to the route. Otherwise the signal shows the optical proceed aspect and the related ATB-EG code is sent to the track. As soon as a Level 2 train reports itself in rear of a route currently assigned for optical authorisation (e.g. after start of mission procedure or when the driver changes level from LSTM to Level 2), the optical authorisation is automatically upgraded to a Level 2 movement authority. Consequently, a Level 2 movement authority is downgraded to an optical authorisation after a predefined time-out if the driver closes the cab or a fault is detected that restricts the movement authority (e.g. if the GSM-R radio coverage is unavailable.)

See also


External links

  • What is ERTMS? from UNIFE, the Union of the European Railway Industries.
  • UK Department for Transport, September 2007
  • European Railway Agency
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.