World Library  
Flag as Inappropriate
Email this Article

Liquid-crystal laser

Article Id: WHEBN0031580571
Reproduction Date:

Title: Liquid-crystal laser  
Author: World Heritage Encyclopedia
Language: English
Subject: Liquid crystals, Thick-film dielectric electroluminescent technology, Fog display, Holographic display, 3LCD
Collection: Laser Types, Liquid Crystals, Optical Materials, Photonics
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Liquid-crystal laser

A liquid-crystal laser is a photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.[2]

Contents

  • History 1
  • Mechanism 2
  • Applications 3
  • References 4
  • Bibliography 5
  • Further reading 6
  • External links 7

History

Distributed feedback lasing using Bragg reflection of a periodic structure instead of external mirrors was first proposed in 1971,[3] predicted theoretically with cholesteric liquid crystals in 1978,[4] achieved experimentally in 1980,[5] and explained in terms of a photonic band gap in 1998.[6][7][8] A United States Patent issued in 1973 described a liquid-crystal laser that uses "a liquid lasing medium having internal distributed feedback by virtue of the molecular structure of a cholesteric liquid-crystal material."[9]

Mechanism

Starting with a liquid crystal in the nematic phase, the desired helical pitch (the distance along the helical axis for one complete rotation of the nematic plane subunits) can be achieved by doping the liquid crystal with a chiral molecule.[8] For light circularly polarized with the same handedness, this regular modulation of the refractive index yields selective reflection of the wavelength given by the helical pitch, allowing the liquid-crystal laser to serve as its own resonator cavity. Photonic crystals are amenable to band theory methods, with the periodic dielectric structure playing the role of the periodic electric potential and a photonic band gap (reflection notch) corresponding to forbidden frequencies. The lower photon group velocity and higher density of states near the photonic bandgap suppresses spontaneous emission and enhances stimulated emission, providing favorable conditions for lasing.[7][10] If the electronic band edge falls in the photonic bandgap, electron-hole recombination is strictly suppressed.[11] This allows for devices with high lasing efficiency, low lasing threshold, and stable frequency, where the liquid-crystal laser acts its own waveguide. "Colossal" nonlinear change in refractive index is achievable in doped nematic-phase liquid crystals, that is the refractive index can change with illumination intensity at a rate of about 103cm2/W of illumination intensity.[12][13][14] Most systems use a semiconductor pumping laser to achieve population inversion, though flash lamp and electrical pumping systems are possible.[15]

Tuning of the output wavelength is achieved by smoothly varying the helical pitch: as the winding changes, so does the length scale of the crystal. This in turn shifts the band edge and changes the optical path length in the lasing cavity. Applying a static electric field perpendicular to the dipole moment of the local nematic phase rotates the rod-like subunits in the hexagonal plane and reorders the chiral phase, winding or unwinding the helical pitch.[16] Similarly, optical tuning of the output wavelength is available using laser light far from the pick-up frequency of the gain medium, with degree of rotation governed by intensity and the angle between the polarization of the incident light and the dipole moment.[17][18][19] Reorientation is stable and reversible. The chiral pitch of a cholesteric phase tends to unwind with increasing temperature, with a disorder-order transition to the higher symmetry nematic phase at the high end.[5][20][21][22] By applying a temperature gradient perpendicular to the direction of emission varying the location of stimulation, frequency may be selected across a continuous spectrum.[23] Similarly, a quasi-continuous doping gradient yields multiple laser lines from different locations on the same sample.[15] Spatial tuning may also be accomplished using a wedge cell. The boundary conditions of the narrower cell squeeze the helical pitch by requiring a particular orientation at the edge, with discrete jumps where the outer cells rotate to the next stable orientation; frequency variation between jumps is continuous.[24]

If a defect is introduced into the liquid crystal to disturb the periodicity, a single allowed mode may be created inside of the photonic bandgap, reducing power leeching by spontaneous emission at adjacent frequencies. Defect mode lasing was first predicted in 1987, and was demonstrated in 2003.[11][25][26]

While most such thin films lase on the axis normal to the film's surface, some will lase on a conic angle around that axis.[27]

Applications

  • Biomedical sensing: small size, low cost, and low power consumption offer a variety of advantages in biomedical sensing applications. Potentially, liquid-crystal lasers could form the basis for "lab on a chip" devices that provide immediate readings without sending a sample away to a separate lab.[28]
  • Medical: low emission power limits such medical procedures as cutting during surgeries, but liquid-crystal lasers show potential to be used in microscopy techniques and in vivo techniques such as photodynamic therapy.[1]
  • Display screens: liquid-crystal-laser-based displays offer most of the advantages of standard liquid-crystal displays, but the low spectral spread gives more precise control over color. Individual elements are small enough to act as single pixels while retaining high brightness and color definition. A system in which each pixel is a single spatially tuned device could avoid the sometimes long relaxation times of dynamic tuning, and could emit any color using spatial addressing and the same monochromatic pumping source.[28][29][30]
  • Environmental sensing: using a material with a helical pitch highly sensitive to temperature, electric field, magnetic field, or mechanical strain, color shift of the output laser provides a simple, direct measurement of environmental conditions.[31]

References

  1. ^ a b Woltman 2007, p. 357
  2. ^ Jacobs; Cerqua; Marshall; Schmid; Guardalben; Skerrett (1988). "Liquid-crystal laser optics: design, fabrication, and performance".  
  3. ^ Kogelnik, H.; C.V. Shank (1971). "Stimulated emission in a periodic structure". Applied Physics Letters 18 (4): 152.  
  4. ^ Kukhtarev, NV (1978). "Cholesteric liquid crystal laser with distributed feedback". Soviet Journal of Quantum Electronics 8 (6): 774.  
  5. ^ a b Ilchishin, I.P.; E.A. Tikhonov, V.G. Tishchenko, and M.T. Shpak (1980). "Generation of a tunable radiation by impurity cholesteric liquid crystals". Journal of Experimental and Theoretical Physics Letters 32: 24–27.  
  6. ^ Woltman 2007, p. 310
  7. ^ a b Kopp, V.I.; B. Fan; H. K. M. Vithana; A. Z. Genack (1998). "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals". Optics Express 23 (21): 1707–1709.  
  8. ^ a b Dolgaleva, Ksenia; Simon K.H. Wei; Svetlana G. Lukishova; Shaw H. Chen; Katie Schwertz; Robert W. Boyd (2008). "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye". Journal of the Optical Society of America 25 (9): 1496–1504.  
  9. ^ Lawrence Goldberg and Joel Schnur Tunable internal-feedback liquid crystal-dye laser U.S. Patent 3,771,065 Issue date: 1973
  10. ^ Kuroda, Keiji; Tsutomu Sawada; Takashi Kuroda; Kenji Watanabe; Kazuaki Sakoda (2009). "Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies". Optics Express 17 (15): 13168–13177.  
  11. ^ a b Yablonovich, Eli (1987). "Inhibited Spontaneous Emission in Solid-State Physics and Electronics". Physical Review Letters 58 (20): 2059–2062.  
  12. ^ Lucchetti, L.; M. Di Fabrizio; O. Francescangeli; F. Simoni (2004). "Colossal optical nonlinearity in dye doped liquid crystals". Optics Communications 233 (4–6): 417–424.  
  13. ^ Khoo, I.C. (1995). "Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film". Optics Letters 20 (20): 2137–2139.  
  14. ^ Khoo, Iam-Choo (2007). Liquid Crystals. Wiley-Interscience.  
  15. ^ a b Morris, Stephen M.; Philip JW Hands; Sonja Findeisen-Tandel; Robert H. Cole; Timothy D. Wilkinson; Harry J. Coles (2008). "Polychromatic liquid crystal laser arrays towards display applications". Optics Express 16 (23): 18827–37.  
  16. ^ Maune, Brett; Marko Lončar; Jeremy Witzens; Michael Hochberg; Thomas Baehr-Jones; Demetri Psaltis; Axel Scherer; Yueming Qiu (2004). "Liquid-crystal electric tuning of a photonic crystal laser". Applied Physics Letters 85 (3): 360.  
  17. ^ Furumi, Seiichi; Shiyoshi Yokoyama; Akira Otomo; Shinro Mashiko (2004). "Phototunable photonic bandgap in chiral liquid crystal device". Applied Physics Letters 84 (14): 2491.  
  18. ^ Andy, Fuh; Tsung-Hsien Lin, J.-H. Liu, and F.-C. Wu (2004). "Lasing in chiral photonic liquid crystals and associated frequency tuning". Optics Express 12 (9): 1857–1863.  
  19. ^ Khoo, Iam-Choo; Wu, Shin-Tson (1993). Optics and nonlinear optics of liquid crystals. World Scientific.  
  20. ^ Morris, S.M.; A. D. Ford; M. N. Pivnenko; H. J. Coles (2005). "Enhanced emission from liquid-crystal lasers". Journal of Applied Physics 97 (2): 023103.  
  21. ^ Morris, SM; AD Ford; HJ Coles (July 2009). "Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser". Journal of Applied Physics 106 (2): 023112.  
  22. ^ Ozaki, M.; M. Kasano; D. Ganzke; W. Haase; K. Yoshino (2002). "Mirrorless lasing in a dye-doped ferroelectric liquid crystal". Advanced Materials 14 (4): 306–309.  
  23. ^ Huang, Yuhua; Ying Zhou, and Shin-Tson Wu (2006). "Spatially tunable laser emission in dye-doped photonic liquid crystals". Applied Physics Letters 88: 011107.  
  24. ^ Jeong, Mi-Yun; Hyunhee Choi; J. W. Wu (2008). "Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell". Applied Physics Letters 92 (5): 051108.  
  25. ^ Woltman 2007, pp. 332–334
  26. ^ Schmidtke, Jürgen; Werner Stille; Heino Finkelmann (2003). "Defect Mode Emission of a Dye Doped Cholesteric Polymer Network". Physical Review Letters 90 (8): 083902.  
  27. ^ Lee, C.-R.; Lin, S.-H.; Yeh, H.-C.; Ji, T.-D. (7 December 2009). "Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient". Optics Express 17 (25). 
  28. ^ a b "Liquid crystal lasers the size of a human hair". Physorg. December 2005. Retrieved 2011-04-09. 
  29. ^ "Liquid crystal lasers promise cheaper, high colour resolution laser television". Physorg. April 2009. Retrieved 2011-04-09. 
  30. ^ "Laser Displays: liquid-crystal laser promises low-fabrication-cost display". Laser Focus World. January 2009. Retrieved 2011-04-09. 
  31. ^ Palffy-Muhoray, Peter; Wenyi Cao; Michele Moreira; Bahman Taheri; Antonio Munoz (2006). "Photonics and lasing in liquid crystal materials". Philosophical Transactions of the Royal Society A 364 (1847): 2747–2761.  

Bibliography

  • Woltman, Scott J.; Crawford, Gregory Philip; Jay, Gregory D. (2007). Liquid crystals: frontiers in biomedical applications. World Scientific.  

Further reading

  • Coles, Harry; Stephen Morris (2010). "Liquid-crystal lasers". Nature Photonics 4 (10): 676–685.  
  • Joannopoulos, John D.; Johnson, Steven G.; Winn, Joshua N.; Meade, Robert D. (2008). Photonic Crystals: Molding the Flow of Light. Princeton University Press.  

External links

  • a list of papers related to photonic properties of chiral liquid crystals
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.