World Library  
Flag as Inappropriate
Email this Article

Liquid scintillation counting

Article Id: WHEBN0000742038
Reproduction Date:

Title: Liquid scintillation counting  
Author: World Heritage Encyclopedia
Language: English
Subject: Radiocarbon dating, Chromatography detector, Tritium, Radioactivity in the life sciences, Carbon-14
Collection: Ionising Radiation Detectors, Particle Detectors, Photochemistry
Publisher: World Heritage Encyclopedia

Liquid scintillation counting

Liquid scintillation counting is the measurement of activity of a sample of radioactive material which uses the technique of mixing the active material with a liquid scintillator, and counting the resultant photon emissions. The purpose is to allow more efficient counting due to the intimate contact of the activity with the scintillator. It is generally used for alpha and beta particle detection.


Liquid Scintillation Counter

Samples are dissolved or suspended in a "cocktail" containing a benzene or toluene, but more recently less hazardous solvents are used), typically some form of a surfactant, and small amounts of other additives known as "fluors" or scintillators. Scintillators can be divided into primary and secondary phosphors, differing in their luminescence properties.

Beta particles emitted from the isotopic sample transfer energy to the solvent molecules: the π cloud of the aromatic ring absorbs the energy of the emitted particle. The energized solvent molecules typically transfer the captured energy back and forth with other solvent molecules until the energy is finally transferred to a primary scintillator. The primary phosphor will emit photons following absorption of the transferred energy. Because that light emission may be at a wavelength that does not allow efficient detection, many cocktails contain secondary phosphors that absorb the fluorescence energy of the primary phosphor and re-emit at a longer wavelength.

The radioactive samples and cocktail are placed in small transparent or translucent (often glass or plastic) vials that are loaded into an instrument known as a liquid scintillation counter. Newer machines may use 96-well plates with individual filters in each well. Many counters have two photo multiplier tubes connected in a coincidence circuit. The coincidence circuit assures that genuine light pulses, which reach both photo multiplier tubes, are counted, while spurious pulses (due to line noise, for example), which would only affect one of the tubes, are ignored.

Counting efficiencies under ideal conditions range from about 30% for tritium (a low-energy beta emitter) to nearly 100% for phosphorus-32, a high-energy beta emitter. Some chemical compounds (notably chlorine compounds) and highly colored samples can interfere with the counting process. This interference, known as "quenching", can be overcome through data correction or through careful sample preparation.

High-energy beta emitters, such as phosphorus-32, can also be counted in a scintillation counter without the cocktail, instead using an aqueous solution. This technique, known as Cherenkov counting, relies on the [[Cherenkov

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.