World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000018184
Reproduction Date:

Title: Lizard  
Author: World Heritage Encyclopedia
Language: English
Subject: Rhinoceros iguana, Tuatara, Cthulhu Mythos deities, List of animals displaying homosexual behavior, Kaijudo (TV series)
Collection: Early Jurassic First Appearances, Lizards
Publisher: World Heritage Encyclopedia


Fossil range: Early JurassicHolocene, 199–0Ma
Possible Late Triassic record
Central bearded dragon, Pogona vitticeps
Central bearded dragon, Pogona vitticeps
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Superclass: Tetrapoda
Class: Reptilia
Order: Squamata
Suborder: Lacertilia*
Günther, 1867
Included groups
Excluded groups

Sauria Macartney, 1802

Lizards are a widespread group of squamate reptiles, with approximately over 6,000 species,[1] ranging across all continents except Antarctica, as well as most oceanic island chains. The group, traditionally recognized as the suborder Lacertilia, is defined as all extant members of the Lepidosauria (reptiles with overlapping scales) that are neither sphenodonts (i.e., tuatara) nor snakes – they form an evolutionary grade.[2] While the snakes are recognized as falling phylogenetically within the Toxicofera clade from which they evolved, the sphenodonts are the sister group to the squamates, the larger monophyletic group, which includes both the lizards and the snakes.


  • Biology 1
  • Physiology 2
    • Shedding and regenerating tails 2.1
  • Evolution and relationships 3
    • Lizard diversification 3.1
      • Iguania 3.1.1
      • Gekkota 3.1.2
  • Relationship with humans 4
  • Classification 5
  • See also 6
  • Notes 7
  • References 8
  • Further reading 9
  • External links 10


Lizards typically have feet and external ears, while snakes lack both of these characteristics. However, because they are defined negatively as excluding snakes, lizards have no unique distinguishing characteristic as a group. Lizards and snakes share a movable quadrate bone, distinguishing them from the sphenodonts, which have more primitive and solid diapsid skulls. Many lizards can detach their tails to escape from predators, an act called autotomy. Vision, including color vision, is particularly well developed in most lizards, and most communicate with body language or bright colors on their bodies, as well as with pheromones. Lizards are the most speciose among extant reptiles, comprising about 60% of all living species.

The adult length of species within the suborder ranges from a few centimeters for chameleons such as Brookesia micra and geckos such as Sphaerodactylus ariasae to nearly in the case of the largest living varanid lizard, the Komodo dragon. Some extinct varanids reached great size. The extinct aquatic mosasaurs reached 17 m (56 ft), and the giant monitor Megalania is estimated to have reached up to 7 m (23 ft) long.

The name Sauria was coined by James Macartney (1802);[3] it was the Latinisation of the French name Sauriens, coined by Alexandre Brongniart (1800) for an order of reptiles in the classification proposed by the author, containing lizards and crocodilians,[4] later discovered not to be each other's closest relatives. Later authors used the term "Sauria" in a more restricted sense, i.e. as a synonym of Lacertilia, a suborder of Squamata that includes all lizards but excludes snakes. This classification is rarely used today because Sauria so-defined is a paraphyletic group. It was defined as a clade by Jacques Gauthier, Arnold G. Kluge and Timothy Rowe (1988) as the group containing the most recent common ancestor of archosaurs and lepidosaurs (the groups containing crocodiles and lizards, as per Mcartney's original definition) and all its descendants.[5] A different definition was formulated by Michael deBraga and Olivier Rieppel (1997) who defined Sauria as the clade containing the most recent common ancestor of Choristodera, Archosauromorpha and Lepidosauromorpha and all their descendants.[6] However, neither of these uses have not gained wide acceptance among researchers specializing in lizards.


Feral Jackson's chameleon from a population introduced to Hawaii in the 1970s.

Sight is very important for most lizards, both for locating prey and for communication, and, as such, many lizards have highly acute color vision. Most lizards rely heavily on body language, using specific postures, gestures, and movements to define territory, resolve disputes, and entice mates. Some species of lizards also use bright colors, such as the iridescent patches on the belly of Sceloporus. These colors would be highly visible to predators, so are often hidden on the underside or between scales and only revealed when necessary. The particular innovation in this respect is the dewlap, a brightly colored patch of skin on the throat, usually hidden between scales. When a display is needed, a lizard can erect the hyoid bone of its throat, resulting in a large vertical flap of brightly colored skin beneath the head which can be then used for communication. Anoles are particularly famous for this display, with each species having specific colors, including patterns only visible under ultraviolet (UV) light, as many lizards can see UV light.

Shedding and regenerating tails

Lizard tails are often a different and dramatically more vivid color than the rest of the body so as to encourage potential predators to strike for the tail first.

Many lizard species (including geckos, skinks, and others) are capable of shedding part of their tails through a process called autotomy. This is an example of the pars pro toto principle, sacrificing "a part for the whole", and is employed by lizards to allow them to escape when captured by the tail by a predator. The detached tail writhes and wiggles, creating a deceptive sense of continued struggle, distracting the predator's attention from the fleeing prey animal.

The lizard will partially regenerate its tail over a period of weeks. A 2014 research identified 326 genes involving the regenaration of lizard tails.[7] The new section will contain cartilage rather than bone, and the skin may be distinctly discolored compared to the rest of the body.

Evolution and relationships

Fossil mosasaur Prognathodon, a varanoid.

The retention of the basic 'reptilian' amniote body form by lizards makes it tempting to assume any similar animal, alive or extinct, is also a lizard. However, this is not the case, and lizards as squamates are part of a well-defined group.

The earliest amniotes were superficially lizard-like, but had solid, box-like skulls, with openings only for eyes and nostrils, termed the anapsid condition. Turtles retain, or have re-evolved, this skull form. Early anapsids later gave rise to two new groups with additional holes in their skulls to make room for and anchor larger jaw muscles. The synapsids, with a single fenestra, gave rise to the large, but generally lizard-like pelycosaurs, which include Dimetrodon, a group which again gave rise to the therapsids, including the cynodonts, from which the modern mammals would evolve.

The modern Tuatara retains the basic lepidosaur skull, distinguishing it from true lizards in spite of superficial similarities. Squamates, including snakes and all true lizards, further lightened the skull by eliminating the lower margin of the lower skull opening.

The earliest known fossil remains of a lizard belong to the iguanian species Tikiguania estesi, found in the Tiki Formation of India, which dates to the Carnian stage of the Triassic period, about 220 million years ago.[8] However, doubt has been raised over the age of Tikiguania because it is almost indistinguishable from modern agamid lizards. The Tikiguania remains may instead be late Tertiary or Quaternary in age, having been washed into much older Triassic sediments.[9] Lizards are most closely related to a group called Rhynchocephalia, which includes the tuatara. Rhynchocephalians first appeared in the Late Triassic, so it can be inferred that the lizard-rhynchocephalian divergence occurred at this time and that the earliest lizards appeared in the Triassic.[9]

Mitochondrial phylogenetics suggest that the first lizards evolved in the late Permian. Most evolutionary relationships within the squamates are not yet completely worked out, with the relationship of snakes to other groups being the most problematic. On the basis of morphological data, iguanid lizards were thought to have diverged from other squamates very early on, but recent molecular phylogenies, both from mitochondrial and nuclear DNA, do not support this.[10] Because snakes have a faster molecular clock than other squamates,[10] and few early snake and snake ancestor fossils have been found,[11] resolving the relationship between snakes and other squamate groups is difficult.

Lizard diversification

Lacertilia comprises four generally recognized suborders, Iguania, Gekkota, Amphisbaenia and Autarchoglossa, with the "blind skinks" in the family Dibamidae having an uncertain position. While traditionally excluded from the lizards, the snakes are usually classified as a clade with a similar subordinal rank.[12]


Ground agama lizard (Agama aculeata) in Tanzania.
Anoles mating, Gainesville, Florida.

The suborder Iguania, found in Africa, southern Asia, Australia, the New World and the islands of the west Pacific, forms the sister group to the remainder of the squamata. The various species are largely arboreal, and have primitively fleshy, non-prehensile tongues, some even have scales, but this condition is obviously highly modified in the chameleons. This clade includes the following families:


Active hunters, the Gekkota include three families comprising the distinctive cosmopolitan geckos and the legless, flap-footed lizards of Australia and New Guinea. Like snakes, the flap-footed lizards and most geckos lack eyelids. Unlike snakes, they use their tongues to clean their often highly developed eyes. While gecko feet have unique surfaces that allow them to cling to glass and run on ceilings,[13] the flap-foot has lost its limbs. The three families of this suborder are:

Relationship with humans

Lizard of Yemen with blue and pink colours.
A lizard as the symbol of the Military Organization Lizard Union, a WWII Polish anti-Nazi resistance group.
Green iguanas (Iguana iguana), are popular exotic pets

Most lizard species are harmless to humans. Only the largest lizard species, the Komodo dragon, which reaches 3.3 m (11 ft) in length and weighs up to 166 kg (365 lb), has been known to stalk, attack, and, on occasion, kill humans. An eight-year-old Indonesian boy died from blood loss after an attack in 2007.[14] The venoms of the Gila monster and beaded lizard are not usually deadly, but they can inflict extremely painful bites due to powerful jaws.

Numerous species of lizard are kept as pets, including bearded dragons, iguanas, anoles, and geckos (such as the popular leopard gecko). Some lizards have an affinity for humans, but many are suspicious or skittish around them. Lizards that bite humans are very rare. Lizards are predominantly insectivorous, but some eat fruit, or vegetables. Live crickets and worms are the most typical foods for pet lizards, though the crested gecko (not a friendly lizard to humans) can feed entirely on fruit.

Lizard symbolism plays important, though rarely predominant, roles in some cultures (e.g., Tarrotarro in Australian Aboriginal mythology). The Moche people of ancient Peru worshipped animals and often depicted lizards in their art.[15] According to a popular legend in Maharashtra, a common Indian monitor, with ropes attached, was used to scale the walls of the Sinhagad fort in the Battle of Sinhagad.[16]

Green iguanas are eaten in Central America, where they are referred to sometimes as "chicken of the tree" after their habit of resting in trees and their supposed chicken-like taste,[17][18] and spiny-tailed lizards are eaten in Africa. In North Africa, Uromastyx species are considered dhaab or 'fish of the desert' and eaten by nomadic tribes.[19]


Close-up of the head of the legless fossorial amphisbaenid Rhineura.
Underside of a thorny devil, an agamid, Western Australia.
The eastern blue-tongued lizard, a scincomorph.

Suborder Lacertilia (Sauria) – (lizards)

See also


The venomous Gila monster, Heloderma s. suspectum.
Burton's legless lizard, a pygopodid lizard found in Australia and New Guinea.
  1. ^ Reptile Database. Retrieved on 2012-04-22
  2. ^ Gibbons, J. Whitfield; Gibbons, Whit (1983). Their Blood Runs Cold: Adventures With Reptiles and Amphibians.  
  3. ^ James Macartney: Table III in: George Cuvier (1802) "Lectures on Comparative Anatomy" (translated by William Ross under the inspection of James Macartney). Vol I. London, Oriental Press, Wilson and Co.
  4. ^ Alexandre Brongniart (1800) "Essai d’une classification naturelle des reptiles. 1ère partie: Etablissement des ordres." Bulletin de la Science. Société Philomathique de Paris 2 (35): 81-82
  5. ^  
  6. ^ Debraga, M. and Rieppel, O. (1997). "Reptile phylogeny and the interrelationships of turtles". Zoological Journal of the Linnean Society 120 (3): 281–354.  
  7. ^ Scientists discover how lizards regrow tails, The Independent, August 20, 2014
  8. ^ Datta, P.M. and Ray, S. (2006). "Earliest lizards from the Late Triassic (Carnian) of India". Journal of Vertebrate Paleontology 26 (4): 795–800.  
  9. ^ a b Hutchinson, M.N.; Skinner, A.; Lee, M.S.Y. (2012). and the antiquity of squamate reptiles (lizards and snakes)"Tikiguania". Biology Letters. in press (4): 665–9.  
  10. ^ a b Kumazawa, Yoshinori (2007). "Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations". Gene 388 (1–2): 19–26.  
  11. ^ "Lizards & Snakes Alive!". American Museum of Natural History. Retrieved 2007-12-25. 
  12. ^ Squamata Oppel, 1811. the Integrated Taxonomic Information System.
  13. ^ Santos, Daniel; Spenko, Matthew; Parness, Aaron; Kim, Sangbae; Cutkosky, Mark (2007). "Directional adhesion for climbing: theoretical and practical considerations". Journal of Adhesion Science and Technology 21 (12–13): 1317–1341.  
  14. ^ Komodo dragon kills boy in Indonesia – World news – Asia-Pacific – MSNBC. Retrieved on 2011-11-07.
  15. ^ Berrin, Katherine & Larco Museum. The Spirit of Ancient Peru:Treasures from the Museo Arqueológico Rafael Larco Herrera. New York: Thames and Hudson, 1997.
  16. ^ Auffenberg, Walter (1994). The Bengal Monitor. University Press of Florida. p. 494.  
  17. ^ Iguana, another white meat
  18. ^ Referencias culturales - todo iguanas verdes
  19. ^ Grzimek, Bernhard. Grzimek’s Animal Life Encyclopedia (Second Edition) Vol 7 – Reptiles. (2003) Thomson – Gale. Farmington Hills, Minnesota. Vol Editor – Neil Schlager. ISBN 0-7876-5783-2 (for vol.7). p. 48


  • Capula, Massimo; Behler, John L. (1989). Simon & Schuster's Guide to Reptiles and Amphibians of the World.  
  • Rosenfeld, Arthur (1987). Exotic Pets.  

Further reading

Pianka, Eric R.; Vitt, Laurie J. (2006). Lizards: Windows to the Evolution of Diversity. Berkeley, Calif.: Univ. of California Press.  

External links

  • Data related to Sauria at Wikispecies
  • Lizard Gallery
  • The Lizards Living in Qatar. 2014. First edition, Published in Doha (Qatar), 2014, 5 June (World Environment Day). 570 pages. ISBN 978-9927-93-12-9
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.