World Library  
Flag as Inappropriate
Email this Article

Neolithic Europe

Article Id: WHEBN0000464879
Reproduction Date:

Title: Neolithic Europe  
Author: World Heritage Encyclopedia
Language: English
Subject: Neolithic, History of Europe, Old Europe (archaeology), Religion and ritual of the Cucuteni–Trypillian culture, Körös culture
Collection: Neolithic Europe, Pre-Indo-Europeans
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Neolithic Europe

A map showing the Neolithic expansions from the 7th to the 5th millennium BCE, including the Cardium Culture in blue.
Europe in ca. 4500-4000 BCE.

Neolithic Europe refers to a prehistoric period in which Neolithic technology was present in Europe. This corresponds roughly to a time between 7000 BCE (the approximate time of the first farming societies in Greece) and c. 1700 BCE (the beginning of the Bronze Age in northwest Europe). The Neolithic overlaps the Mesolithic and Bronze Age periods in Europe as cultural changes moved from the southeast to northwest at about 1 km/year.[1]

The duration of the Neolithic varies from place to place, its end marked by the introduction of bronze implements: in southeast Europe it is approximately 4,000 years (i.e. 7000 BCE–3000 BCE) while in Northwest Europe it is just under 3,000 years (c. 4500 BCE–1700 BCE).

Contents

  • Basic cultural characteristics 1
  • Archaeology 2
  • Genetics 3
    • Genetic studies 3.1
    • Y-DNA based studies 3.2
  • Language 4
  • List of cultures and sites 5
    • Megalithic 5.1
  • See also 6
  • References 7
  • Sources 8
  • Further reading 9
  • External links 10

Basic cultural characteristics

An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools.

Regardless of specific chronology, many European Neolithic groups share basic characteristics, such as living in small-scale, family-based communities, subsisting on domesticated plants and animals supplemented with the collection of wild plant foods and with hunting, and producing hand-made pottery, that is, pottery made without the potter's wheel. Polished stone axes lie at the heart of the neolithic (new stone) culture, enabling forest clearance for agriculture and production of wood for dwellings, as well as fuel.

There are also many differences, with some Neolithic communities in southeastern Europe living in heavily fortified settlements of 3,000-4,000 people (e.g., Sesklo in Greece) whereas Neolithic groups in Britain were small (possibly 50-100 people) and highly mobile cattle-herders.

The details of the origin, chronology, social organization, subsistence practices and ideology of the peoples of Neolithic Europe are obtained from archaeology, and not historical records, since these people left none. Since the 1970s, population genetics has provided independent data on the population history of Neolithic Europe, including migration events and genetic relationships with peoples in South Asia.

A further independent tool, linguistics, has contributed hypothetical reconstructions of early European languages and family trees with estimates of dating of splits, in particular theories on the relationship between speakers of Indo-European languages and Neolithic peoples. Some archaeologists believe that the expansion of Neolithic peoples from southwest Asia into Europe, marking the eclipse of Mesolithic culture, coincided with the introduction of Indo-European speakers,Bellwood 2004, p. . whereas other archaeologists and many linguists believe the Indo-European languages were introduced from the Pontic-Caspian steppe during the succeeding Bronze Age.Paleolithic times.

Archaeology

Europe in ca. 4000-3500 BCE.
A stone used in Neolithic rituals, in Detmerode, Wolfsburg, Germany.

Archeologists believe that food-producing societies first emerged in the Levantine region of southwest Asia at the close of the mini-Ice Age around 12,000 BCE, and developed into a number of regionally distinctive cultures by the eighth millennium BCE. Remains of food-producing societies in the Aegean have been carbon-dated to around 6500 BCE at Knossos, Franchthi Cave, and a number of mainland sites in Thessaly. Neolithic groups appear soon afterwards in the Balkans and south-central Europe. The Neolithic cultures of southeastern Europe (the Balkans, Italy, and the Aegean) show some continuity with groups in southwest Asia and Anatolia (e.g., Çatalhöyük).

Current evidence suggests that Neolithic material culture was introduced to Europe via western Anatolia, and that similarities in cultures of North Africa and the Pontic steppes are due to diffusion out of Europe. All Neolithic sites in Europe contain ceramics, and contain the plants and animals domesticated in Southwest Asia: einkorn, emmer, barley, lentils, pigs, goats, sheep, and cattle. Genetic data suggest that no independent domestication of animals took place in Neolithic Europe, and that all domesticated animals were originally domesticated in Southwest Asia.[2] The only domesticate not from Southwest Asia was broomcorn millet, domesticated in East Asia.[3] The earliest evidence of cheese-making dates to 5500 BCE in Kujawy, Poland.[4]

Archaeologists seem to agree that the culture of the early Neolithic is relatively homogeneous, compared both to the late Mesolithic and the later Neolithic. The diffusion across Europe, from the Aegean to Britain, took about 2,500 years (6500 BCE - 4000 BCE). The Baltic region was penetrated a bit later, around 3500 BCE, and there was also a delay in settling the Pannonian plain. In general, colonization shows a "saltatory" pattern, as the Neolithic advanced from one patch of fertile alluvial soil to another, bypassing mountainous areas. Analysis of radiocarbon dates show clearly that Mesolithic and Neolithic populations lived side by side for as much as a millennium in many parts of Europe, especially in the Iberian peninsula and along the Atlantic coast.[5]

With some exceptions, population levels rose rapidly at the beginning of the Neolithic until they reached the carrying capacity.[6] This was followed by a population crash of "enormous magnitude" after 5000 BCE, with levels remaining low during the next 1,500 years.[6] Populations began to rise after 3500 BCE, with further dips and rises occurring between 3000 and 2500 BCE but varying in date between regions.[6] A study of twelve European regions found most experienced boom and bust patterns and suggested an "endogenous, not climatic cause."[7]

Genetics

Archaeologists agree that the technologies associated with agriculture originated in the Levant/Near East and then spread into Europe. However, debate exists whether this resulted from an active migratory process from the Near East, or merely due to cultural contact between Europeans and Near Easterners. Currently, three models summarize the proposed pattern of spread:[8]

  1. Replacement model: posits that there was a significant migration of farmers from the Fertile Crescent into Europe. Given their technological advantages, they would have displaced or absorbed the less numerous hunter-gathering populace. Thus, modern Europeans are primarily descended from these Neolithic farmers.
  2. Cultural diffusion: in contrast, this model supposes that agriculture reached Europe by way of a flow of ideas and trade between the Mesolithic European population and Anatolian farmers. There was no net increase in migration during this process, and therefore, modern Europeans are descended from the "original" Palaeolithic hunter-gatherers.
  3. Pioneer model: recognises that models 1) and 2) above may represent false dichotomies. This model postulates that there was an initial, small scale migration of farmers from the Near East to certain regions of Europe. They might have enjoyed localized demographic expansions due to social advantages. The subsequent spread of farming technologies throughout the rest of Europe was then carried out by Mesolithic Europeans who acquired new skill through trade and cultural interaction.

Genetic studies

Genetic studies have been utilised in the study of pre-historic population movements. On the whole, scientists agree that there is evidence for a migration during the Neolithic. However, they cannot agree on the extent of this movement. The conclusions of studies appear to be 'operator dependent'. That is, results vary depending on what underlying mutation rates are assumed, and conclusions are drawn from how the authors 'envisage' their results fit with known archaeological and historic processes. Consequently, such studies must be interpreted with caution.

Perhaps the first scholar to posit a large-scale Neolithic migration, based on genetic evidence, was Luigi Luca Cavalli-Sforza. By applying principal component analysis to data from "classical genetic markers" (protein polymorphisms from ABO blood groups, HLA loci, immunoglobulins, etc.), Cavalli-Sforza discovered interesting clues about the genetic makeup of Europeans. Although being very genetically homogeneous, several patterns did exist.[9] The most important one was a north-western to south-eastern cline with a Near Eastern focus. Accounting for 28% of the overall genetic diversity in the European samples in his study, he attributed the cline to the spread of agriculture from the Middle East c. 10,000 to 6,000 years ago.[9]

Cavalli-Sforza's explanation of demic diffusions stipulated that the clines were due to the population expansion of neolithic farmers into a scarcely populated, hunter-gathering Europe, with little initial admixture between agriculturalists and foragers. The predicted route for this spread would have been from Anatolia to central Europe via the Balkans. However, given that the time depths of such patterns are not known, "associating them with particular demographic events is usually speculative".[10] Apart from a demic Neolithic migration, the clines may also be compatible with other demographic scenarios (Barbujani and Bartorelle 2001), such as the initial Palaeolithic expansion, the Mesolithic (post-glacial) re-expansions[10] or later (historic) colonizations.[11]

Studies using direct DNA evidence have produced varying results. A notable proponent of Cavalli-Sforza's demic diffusion scenario is Chikhi. In his 1998 study, utilising polymorphic loci from seven hypervariable autosomal DNA loci, an autocorrelation analysis produced a clinal pattern closely matching that in Cavalli-Sforza’s study. He calculated that the separation times were no older than 10,000 years. "The simplest interpretation of these results is that the current nuclear gene pool largely reflects the westward and northward expansion of a Neolithic group".[12]

Although the above studies propounded a 'significant' Neolithic genetic contribution, they did not quantify the exact magnitude of the genetic contribution. Dupanloup performed an admixture analysis based on several autosomal loci, mtDNA and NRY haplogroup frequencies. The study was based on the assumption that Basques were modern representatives of Palaeolithic hunter-gatherers’ gene pool, and Near Eastern peoples were a proxy population for Neolithic farmers. Subsequently, they used admixture analysis to estimate the likely components of the contemporary European gene pool contributed by the two parental populations whose members hybridized at a certain moment in the past. The study suggested that the greatest Near Eastern admixture occurs in the Balkans (~80%) and Southern Italy (~60%), whilst it is least in peoples of the British Isles (estimating only a 20% contribution). The authors concluded that the Neolithic shift to agriculture entailed major population dispersal from the Near East.[13]

Results derived from analysis of the non-recombining portion of the Y- chromosomes (NRY) produced, at least initially, similar gradients to the classic demic diffusion hypothesis. Two significant studies were Semino 2000 and Rosser 2000, which identified haplogroups J2 and E1b1b (formerly E3b) as the putative genetic signatures of migrating Neolithic farmers from Anatolia,[10] and therefore represent the Y-chromosomal components of a Neolithic demic diffusion.[14]

This association was strengthened when King and Underhill (2002) found that there was a significant correlation between the distribution of Hg J2 and Neolithic painted pottery in European and Mediterranean sites. However, studies of the ancient Y-DNA from the earlier Neolithic cave burials of Cardium pottery culture men shows they were mainly haplogroup G2a.[15] These 'Neolithic lineages' accounted for 22% of the total European Y chromosome gene pool, and were predominantly found in Mediterranean regions of Europe (Greece, Italy, southeastern Bulgaria, southeastern Iberia).

Y-DNA based studies

Ancient DNA of early Neolithic Cardial Pottery men in cave burials have been found to be mainly of Y-DNA haplogroup G2a.[15]

Later Y-DNA based studies, exploiting an increased understanding of the phylogenetic relationships, performing micro-regional haplogroup frequency analysis, reveal a more complicated demographic history.[11] The studies suggest that "the large-scale clinal patterns of Hg E and Hg J reflect a mosaic of numerous small-scale, more regional population movements, replacements, and subsequent expansions overlying previous ranges".[16] Rather than a single, large-scale 'wave of advance' from the Near East, the apparent Hg J2 cline is produced by distinct populations movements emanating from different part of the Aegean and Near East, over a period stretching from the Neolithic to the Classical Period. Similarly, haplogroup E1b1b was also thought to have been introduced into the Balkans by Near Eastern agriculturalists.[14]

However, Cruciani et al. (2007) recently discovered that the large majority of haplogroup E1b1b lineages in Europe are represented by the sub-clade E1b1b1a2- V13, which is rare outside Europe. Cruciani, Battaglia and King all predict that V13 expanded from the Balkans. However, there has been no consensus as to exact timing of this expansion (King and Battalia favour a neolithic expansion, possibly coinciding with the adoption of farming by indigenous Balkaners, whilst Cruciani favours a Bronze Age expansion), nor as to where V13 actually arose (but point to somewhere in the southern Balkans or Anatolia)[17]

Overall, Y-chromosome data seems to support the "Pioneer model", whereby heterogeneous groups of Neolithic farmers colonized selected areas of southern Europe via a primarily maritime route. Subsequent expansion of agriculture was facilitated by the adoption of its methods by indigenous Europeans, a process especially prominent in the Balkans.[11]

The data from mtDNA is also interesting. European mtDNA haplogroup frequencies show little, if any, geographic patterning,[10][9] a result attributed to different molecular properties of mtDNA, as well as different migratory practices between females and males (Semino 2000). The vast majority of mtDNA lineages (60–70%) have been dated to have either emerged in the Mesolithic or Palaeolithic.[10][8] whereas only 20% of mitochondrial lineages are "Neolithic". However, this conclusion has been questioned. Any undetected heterogeneity in the founder population would result in an overestimation in the age of the current population's molecular age. If this is true, then Europe could have been populated far more recently, e.g. during the Neolithic, by a more diverse founding population.[18]

As Chikhi states: "We argue that many mitochondrial lineages whose origin has been traced back to the Palaeolithic period probably reached Europe at a later time". However, Richards et al. (2000) maintain these findings even when founding population heterogeneity is considered. In one such study, Wolfgang Haak extracted ancient mtDNA from what they present as early European farmers from the Linear Pottery Culture in central Europe. The bodies contained a 25% frequency of mtDNA N1a, a haplogroup which they assumed to be linked to the Neolithic. Today the frequency of this haplogroup is a mere 0.2%. Haak presented this as supportive evidence for a Palaeolithic European ancestry.[19]

Formerly there had been much debate about whether the westerly spread of agriculture from the Near East was driven by farmers actually migrating, or by the transfer of ideas and technologies to indigenous hunter-gatherers. However, in a very recent study in 2010, researchers have studied the genetic diversity of modern populations to throw light on the processes involved in these ancient events. The new study, funded by the Wellcome Trust, examines the diversity of the Y chromosome. Mark Jobling, who led the research, said: "We focused on the commonest Y-chromosome lineage in Europe, carried by about 110 million men, it follows a gradient from south-east to north-west, reaching almost 100% frequency in Ireland. We looked at how the lineage is distributed, how diverse it is in different parts of Europe, and how old it is." The results suggested that the lineage R1b1b2 (R-M269), like E1b1b or J lineages, spread together with farming from the Near East. Prior archaeological[20][21][22][23][24] and metrological[25][26] studies had arrived at similar conclusions in support of the migrationist model.

Patricia Balaresque, first author of the study, added: "In total, this means that more than 80% of European Y chromosomes descend from incoming farmers. In contrast, most maternal genetic lineages seem to descend from hunter-gatherers. To us, this suggests a reproductive advantage for farming males over indigenous hunter-gatherer males during the switch from hunting and gathering, to farming".[27]

However, recently a study[28] has shown there to be serious flaws in the above proposed model, pointing out the overgeneralization inherit in the studies of Baleresque 2010. Furthermore, Busby et al. 2012 point out "For this haplogroup to be so ubiquitous, the population carrying R-S127 would have displaced most of the populations present in western Europe after the Neolithic agricultural transition". Clearly common sense dictates that this did not happen. Also they go on to show that within the European specific R-M269 sub-lineage, defined by SNP S127, there exists distinct sub-haplogroups and at this level there exists several "geographically localized pockets, with individual R-M269 sub- haplogroups dominating". There conclusions were that it is likely that R-S127 was already present in native European populations and grew into several geographically distinct sub-lineages across Europe before Neolithic expansion occurred.

A study of Neolithic skeletons in the Great Hungarian Plain found a high frequency of eastern Asian maternal (mtDNA) haplogroups.[29]

Language

There is no direct evidence of the languages spoken in the Neolithic. Some proponents of paleolinguistics attempt to extend the methods of historical linguistics to the Stone Age, but this has little academic support. Criticising scenarios which envision for the Neolithic only a small number of language families spread over huge areas of Europe (as in modern times), Donald Ringe has argued on general principles of language geography (as concerns "tribal", pre-state societies), and the scant remains of (apparently indigenous) non-Indo-European languages attested in ancient inscriptions, that Neolithic Europe must have been a place of great linguistic diversity, with many language families with no recoverable linguistic links to each other, much like western North America prior to European colonisation.[30]

Discussion of hypothetical languages spoken in the European Neolithic is divided into two topics, Indo-European languages and "Pre-Indo-European" languages.

Early Indo-European languages are usually assumed to have reached the Danubian (and maybe Central) Europe in the Chalcolithic or early Bronze Age, e.g. with the Corded Ware or Beaker cultures (see also Kurgan hypothesis for related discussions). The Anatolian hypothesis postulates arrival of Indo-European languages with the early Neolithic. Old European hydronymy is taken by Hans Krahe to be the oldest reflection of the early presence of Indo-European in Europe.

Theories of "Pre-Indo-European" languages in Europe are built on scant evidence. The Basque language is the best candidate for a descendant of such a language, but since Basque is a language isolate, there is no comparative evidence to build upon. Theo Vennemann nevertheless postulates a "Vasconic" family, which he supposes had co-existed with an "Atlantic" or "Semitidic" (i. e., para-Semitic) group. Another candidate is a Tyrrhenian family which would have given rise to Etruscan and Raetic in the Iron Age, and possibly also Aegean languages such as Minoan or Pelasgian in the Bronze Age.

In the north, a similar scenario to Indo-European is thought to have occurred with Uralic languages expanding in from the east. In particular, while the Sami languages of the indigenous Sami people belong in the Uralic family, they show considerable substrate influence, thought to represent one or more extinct original languages. The Sami are estimated to have adopted a Uralic language less than 2,500 years ago.[31] Some traces of indigenous languages of the Baltic area have been suspected in the Finnic languages as well, but these are much more modest. There are early loanwords from unidentified non-IE languages in other Uralic languages of Europe as well.[32]

List of cultures and sites

Excavated dwellings at Skara Brae (Orkney, Scotland), Europe's most complete Neolithic village.

Megalithic

Some Neolithic cultures listed above are known for constructing megaliths. These occur primarily on the Atlantic coast of Europe, but there are also megaliths on western Mediterranean islands.

See also

References

  1. ^ Ammerman & Cavalli-Sforza 1971.
  2. ^ Bellwood 2004, pp. 68–9.
  3. ^ Bellwood 2004, pp. 74, 118.
  4. ^ Subbaraman 2012.
  5. ^ Bellwood 2004, pp. 68–72.
  6. ^ a b c Shennan & Edinborough 2007.
  7. ^ Timpson, Adrian; Colledge, Sue (September 2014). "Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method". Journal of Archaeological Science. 
  8. ^ a b Richards et al. 1996.
  9. ^ a b c Cavalli-Sforza 1997.
  10. ^ a b c d e Rosser et al. 2000.
  11. ^ a b c Di Giacomo et al. 2004.
  12. ^ Chikhi et al. 1998.
  13. ^ Dupanloup et al. 2004.
  14. ^ a b Semino et al. 2000.
  15. ^ a b Lacan et al. 2011.
  16. ^ Semino et al. 2004.
  17. ^ Battaglia et al. 2008.
  18. ^ Barbujani, Bertorelle & Chikhi 1998.
  19. ^ Vandermeer 1975.
  20. ^ Zvelebil 2009a.
  21. ^ Zvelebil 2009b.
  22. ^ Dokládal & Brožek 1961.
  23. ^ Bar-Yosef 1998.
  24. ^ Zvelebil 1989.
  25. ^ Brace et al. 2005.
  26. ^ Ricaut & Waelkens 2008.
  27. ^ Balaresque et al. 2010.
  28. ^ Busby et al. 2011.
  29. ^ Derenko et al. 2012.
  30. ^ Ringe 2009.
  31. ^ Aikio 2004.
  32. ^ Häkkinen 2012.

Sources

  • Aikio, Ante (2004). "An essay on substrate studies and the origin of Saami". In Hyvärinen, Irma; Kallio, Petri; Korhonen, Jarmo. Etymologie, Entlehnungen und Entwicklungen [Etymology, loanwords and developments]. Mémoires de la Société Néophilologique de Helsinki (in German) 63. Helsinki: Société Néophilologique. pp. 5–34.  
  • Ammerman, A. J.; Cavalli-Sforza, L. L. (1971). "Measuring the Rate of Spread of Early Farming in Europe". Man 6 (4): 674–88.  
  • Anthony, David W. (2007). The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. Princeton University Press.  
  • Balaresque, Patricia; Bowden, Georgina R.; Adams, Susan M.; Leung, Ho-Yee; King, Turi E.; Rosser, Zoë H.; Goodwin, Jane; Moisan, Jean-Paul; Richard, Christelle; Millward, Ann; Demaine, Andrew G.; Barbujani, Guido; Previderè, Carlo; Wilson, Ian J.; Tyler-Smith, Chris; Jobling, Mark A. (2010). Penny, David, ed. "A Predominantly Neolithic Origin for European Paternal Lineages". PLoS Biology 8 (1): e1000285.  
  • Barbujani, Guido; Bertorelle, Giorgio; Chikhi, Lounès (1998). "Evidence for Paleolithic and Neolithic Gene Flow in Europe". The American Journal of Human Genetics 62 (2): 488–92.  
  • Bar-Yosef, Ofer (1998). "The Natufian culture in the Levant, threshold to the origins of agriculture". Evolutionary Anthropology: Issues, News, and Reviews 6 (5): 159–77.  
  • Battaglia, Vincenza; Fornarino, Simona; Al-Zahery, Nadia; Olivieri, Anna; Pala, Maria; Myres, Natalie M; King, Roy J; Rootsi, Siiri; Marjanovic, Damir; Primorac, Dragan; Hadziselimovic, Rifat; Vidovic, Stojko; Drobnic, Katia; Durmishi, Naser; Torroni, Antonio; Santachiara-Benerecetti, A Silvana; Underhill, Peter A; Semino, Ornella (2008). "Y-chromosomal evidence of the cultural diffusion of agriculture in southeast Europe". European Journal of Human Genetics 17 (6): 820–30.  
  • Bellwood, Peter (2004). First Farmers: The Origins of Agricultural Societies. Blackwell Publishers.  
  • Brace, C. Loring; Seguchi, Noriko; Quintyn, Conrad B.; Fox, Sherry C.; Nelson, A. Russell; Manolis, Sotiris K.; Qifeng, Pan (2005). "The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form". Proceedings of the National Academy of Sciences 103 (1): 242–7.  
  • Busby, George B. J.; Brisighelli, Francesca; Sánchez-Diz, Paula; Ramos-Luis, Eva; Martinez-Cadenas, Conrado; Thomas, Mark G.; Bradley, Daniel G.; Gusmão, Leonor; Winney, Bruce; Bodmer, Walter; Vennemann, Marielle; Coia, Valentina; Scarnicci, Francesca; Tofanelli, Sergio; Vona, Giuseppe; Ploski, Rafal; Vecchiotti, Carla; Zemunik, Tatijana; Rudan, Igor; Karachanak, Sena; Toncheva, Draga; Anagnostou, Paolo; Ferri, Gianmarco; Rapone, Cesare; Hervig, Tor; Moen, Torolf; Wilson, James F.; Capelli, Cristian (2011). "The peopling of Europe and the cautionary tale of Y chromosome lineage R-M269". Proceedings of the Royal Society B: Biological Sciences 279 (1730): 884–92.  
  • Cavalli-Sforza, LL (1997). "Genes, peoples, and languages". Proceedings of the National Academy of Sciences of the United States of America 94 (15): 7719–24.  
  • Chikhi, L.; Destro-Bisol, G.; Bertorelle, G.; Pascali, V.; Barbujani, G. (1998). "Clines of nuclear DNA markers suggest a largely Neolithic ancestry of the European gene pool". Proceedings of the National Academy of Sciences 95 (15): 9053–8.  
  • Cruciani, F. et al. (2007). "Tracing past human male movements in northern/eastern Africa and western Eurasia: new clues from Y-chromosomal haplogroups E-M78 and J-M12". Molecular Biology Evolution 24: 1300–1311.  
  • Derenko, Miroslava; Malyarchuk, Boris; Denisova, Galina; Perkova, Maria; Rogalla, Urszula; Grzybowski, Tomasz; Khusnutdinova, Elza; Dambueva, Irina; Zakharov, Ilia (2012). Kivisild, Toomas, ed. "Complete Mitochondrial DNA Analysis of Eastern Eurasian Haplogroups Rarely Found in Populations of Northern Asia and Eastern Europe". PLoS ONE 7 (2): e32179.  
  • Di Giacomo, F.; Luca, F.; Popa, L. O.; Akar, N.; Anagnou, N.; Banyko, J.; Brdicka, R.; Barbujani, G.; Papola, F.; Ciavarella, G.; Cucci, F.; Di Stasi, L.; Gavrila, L.; Kerimova, M. G.; Kovatchev, D.; Kozlov, A. I.; Loutradis, A.; Mandarino, V.; Mammi', C.; Michalodimitrakis, E. N.; Paoli, G.; Pappa, K. I.; Pedicini, G.; Terrenato, L.; Tofanelli, S.; Malaspina, P.; Novelletto, A. (2004). "Y chromosomal haplogroup J as a signature of the post-neolithic colonization of Europe". Human Genetics 115 (5): 357–71.  
  • Dokládal, Milan; Brožek, Josef (1961). "Physical Anthropology in Czechoslovakia: Recent Developments". Current Anthropology 2 (5): 455–77.  
  • Dupanloup, I.; Bertorelle, G; Chikhi, L; Barbujani, G (2004). "Estimating the Impact of Prehistoric Admixture on the Genome of Europeans". Molecular Biology and Evolution 21 (7): 1361–72.  
  • Häkkinen, Jaakko (2012). "Early contacts between Uralic and Yukaghir" (PDF). Suomalais-Ugrilaisen Seuran Toimituksia − Mémoires de la Société Finno-Ougrienne (Helsinki: Finno-Ugric Society) (264): 91–101. Retrieved 13 July 2013. 
  • Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Tarrus, Josep; Bosch, Angel; Guilaine, Jean; Crubezy, Eric; Ludes, Bertrand (2011). "Ancient DNA suggests the leading role played by men in the Neolithic dissemination". Proceedings of the National Academy of Sciences 108 (45): 18255–9.  
  • Renfrew, Colin (1987). Archaeology and Language. London: Jonathan Cape.  
  • Ricaut, F. X.; Waelkens, M. (2008). "Cranial Discrete Traits in a Byzantine Population and Eastern Mediterranean Population Movements". Human Biology 80 (5): 535–64.  
  • Richards, M; Côrte-Real, H; Forster, P; MacAulay, V; Wilkinson-Herbots, H; Demaine, A; Papiha, S; Hedges, R; Bandelt, HJ; Sykes, B (1996). "Paleolithic and neolithic lineages in the European mitochondrial gene pool". American Journal of Human Genetics 59 (1): 185–203.  
  •  
  • Rosser, Zoë H.; Zerjal, Tatiana; Hurles, Matthew E.; Adojaan, Maarja; Alavantic, Dragan; Amorim, António; Amos, William; Armenteros, Manuel; Arroyo, Eduardo; Barbujani, Guido; Beckman, G; Beckman, L; Bertranpetit, J; Bosch, E; Bradley, DG; Brede, G; Cooper, G; Côrte-Real, HB; De Knijff, P; Decorte, R; Dubrova, YE; Evgrafov, O; Gilissen, A; Glisic, S; Gölge, M; Hill, EW; Jeziorowska, A; Kalaydjieva, L; Kayser, M; Kivisild, T (2000). "Y-Chromosomal Diversity in Europe is Clinal and Influenced Primarily by Geography, Rather than by Language". The American Journal of Human Genetics 67 (6): 1526–43.  
  • Semino, Ornella; Magri, Chiara; Benuzzi, Giorgia; Lin, Alice A.; Al-Zahery, Nadia; Battaglia, Vincenza; MacCioni, Liliana; Triantaphyllidis, Costas; Shen, Peidong; Oefner, Peter J.; Zhivotovsky, Lev A.; King, Roy; Torroni, Antonio; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Santachiara-Benerecetti, A. Silvana (2004). "Origin, Diffusion, and Differentiation of Y-Chromosome Haplogroups E and J: Inferences on the Neolithization of Europe and Later Migratory Events in the Mediterranean Area". The American Journal of Human Genetics 74 (5): 1023–34.  
  • Semino, O.; Passarino, G; Oefner, PJ; Lin, AA; Arbuzova, S; Beckman, LE; De Benedictis, G; Francalacci, P; Kouvatsi, A; Limborska, S; Marcikiae, M; Mika, A; Mika, B; Primorac, D; Santachiara-Benerecetti, AS; Cavalli-Sforza, LL; Underhill, PA (2000). "The Genetic Legacy of Paleolithic Homo sapiens sapiens in Extant Europeans: A Y Chromosome Perspective". Science 290 (5494): 1155–9.  
  • Shennan, Stephen; Edinborough, Kevan (2007). "Prehistoric population history: From the Late Glacial to the Late Neolithic in Central and Northern Europe". Journal of Archaeological Science 34 (8): 1339–45.  
  • Subbaraman, Nidhi (2012). "Art of cheese-making is 7,500 years old". Nature.  
  • Vandermeer, J. (1975). "Interspecific competition: A new approach to the classical theory". Science 188 (4185): 253–5.  
  • Zvelebil, Marek (1989). "On the transition to farming in Europe, or what was spreading with the Neolithic: a reply to Ammerman (1989)". Antiquity 63 (239): 379–83. 
  • Zvelebil, Marek (2009). "Mesolithic prelude and neolithic revolution". In Zvelebil, Marek. Hunters in Transition: Mesolithic Societies of Temperate Eurasia and Their Transition to Farming. Cambridge University Press. pp. 5–15.  
  • Zvelebil, Marek (2009). "Mesolithic societies and the transition to farming: problems of time, scale and organisation". In Zvelebil, Marek. Hunters in Transition: Mesolithic Societies of Temperate Eurasia and Their Transition to Farming. Cambridge University Press. pp. 167–88.  

Further reading

  • Bellwood, Peter (2001). "Early Agriculturalist Population Diasporas? Farming, Languages, and Genes". Annual Review of Anthropology 30: 181–207.  
  • Cavalli-Sforza, Luigi Luca; Menozzi, Paolo; Piazza, Alberto (1994). The History and Geography of Human Genes. Princeton University Press.  
  • Cavalli-Sforza, Luigi Luca (2001). Genes, Peoples, and Languages. Berkeley: University of California Press.  
  • Gimbutas, Marija (1989). The Language of the Goddess. Harper & Row.  

External links

  • General table of Neolithic sites in Europe
  • Mario Alinei, et al., Paleolithic Continuity Theory of Indo-European Origins
  • culture.gouv.fr: Life along the Danube 6500 years ago
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.