World Library  
Flag as Inappropriate
Email this Article

Neurotransmitter transporter

Article Id: WHEBN0008832206
Reproduction Date:

Title: Neurotransmitter transporter  
Author: World Heritage Encyclopedia
Language: English
Subject: Halothane, Chemical synapse, Tezampanel, Nipecotic acid, Pitrazepin
Collection: Integral Membrane Proteins, Neurotransmitter Transporters
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Neurotransmitter transporter

Neurotransmitter transporters are a class of membrane transport proteins that span the cellular membranes of neurons. Their primary function is to carry neurotransmitters across these membranes and to direct their further transport to specific intracellular locations. There are more than twenty types of neurotransmitter transporters.[1]

Vesicular transporters move neurotransmitters into synaptic vesicles, regulating the concentrations of substances within them.[2] Vesicular transporters rely on a proton gradient created by the hydrolysis of adenosine triphosphate (ATP) in order to carry out their work: v-ATPase hydrolyzes ATP, causing protons to be pumped into the Synaptic vesicles and creating a proton gradient. Then the efflux of protons from the vesicle provides the energy to bring the neurotransmitter into the vesicle.[3]

Neurotransmitter transporters frequently use electrochemical gradients that exist across cell membranes to carry out their work. For example, some transporters use energy obtained by the cotransport, or symport, of Na+ in order to move glutamate across membranes. Such neurotransporter cotransport systems are highly diverse, as recent development indicates that uptake systems are generally selective and associate with a specific neurotransmitter.[4]

Normally, transporters in the synaptic membrane serve to remove neurotransmitters from the synaptic cleft and prevent their action or bring it to an end. However, on occasion transporters can work in reverse, transporting neurotransmitters into the synapse, allowing these neurotransmitters to bind to their receptors and exert their effect. This "nonvesicular release" of neurotransmitters is used by some cells, such as amacrine cells in the retina, as a normal form of neurotransmitter release.[5]

Contents

  • Types 1
  • Clinical significance 2
  • References 3
  • External links 4

Types

Structure of a typical chemical synapse

Specific types of neurotransmitter transporters include the following:

Note that there is no plasmalemmal acetylcholine transporter, as acetylcholine is terminated via rapid metabolism into choline by cholinesterase enzymes, and choline is subsequently transported back into the cell and reconverted into acetylcholine.

Transporters associated with histamine and the endocannabinoids have not yet been identified.

Clinical significance

A variety of neurotransmitter reuptake transporters are pharmacotherapeutic targets for modulating the synaptic neurotransmitter concentration, and therefore neurotransmission.

Vesicular transporters could provide an alternative therapeutic target for the modulation of chemical neurotransmission, as the activity of these transporters could affect the quantity of neurotransmitter released.[7]

  • Vesamicol, for example, is an inhibitor of the vesicular acetylcholine transporter. It prevents the loading of ACh into the presynaptic vesicles, causing a fall in the amount that is released in response to a neuronal action potential. It is not used clinically, but provides a useful tool for research into the behaviour of neurotransmitter vesicles.[8]

References

  1. ^ Iversen L (July 2000). "Neurotransmitter transporters: fruitful targets for CNS drug discovery". Mol. Psychiatry 5 (4): 357–62.  
  2. ^ Johnson J, Tian N, Caywood MS, Reimer RJ, Edwards RH, Copenhagen DR (January 2003). "Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate". J. Neurosci. 23 (2): 518–29.  
  3. ^  
  4. ^ Amara, Susan G.; Kuhar, Michael J. (1993). "Neurotransmitter Transporters:Recent Progress". Annual Review of Neuroscience 16 (1): 73–93.  
  5. ^  
  6. ^ Weihe E, Tao-Cheng JH, Schäfer MK, Erickson JD, Eiden LE (April 1996). "Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles". Proc Natl Acad Sci USA. 93 (8): 3547–52.  
  7. ^ http://www.ncbi.nlm.nih.gov/pubmed/9396009
  8. ^ http://www.ncbi.nlm.nih.gov/pubmed/1487110

External links

  • Neurotransmitter Transporters at the US National Library of Medicine Medical Subject Headings (MeSH)
  • Clearing Your Mind of Neurotransmitters: Functional Impact of Neurotransmitter Transporter Gene Variants - a videocast of the lecture by Randy Blakely, Ph.D., Vanderbilt University. Part of NIH Neuroscience Seminar series. 450 Mb file, .m4v format.
  • The Blakely Lab - Laboratory exploring the molecular basis for neurotransmitter transporter structure, function and regulation.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.