World Library  
Flag as Inappropriate
Email this Article

Normal-inverse Gaussian distribution


Normal-inverse Gaussian distribution

Normal-inverse Gaussian (NIG)
Parameters \mu location (real)
\alpha tail heaviness (real)
\beta asymmetry parameter (real)
\delta scale parameter (real)
\gamma = \sqrt{\alpha^2 - \beta^2}
Support x \in (-\infty; +\infty)\!
pdf \frac{\alpha\delta K_1 \left(\alpha\sqrt{\delta^2 + (x - \mu)^2}\right)}{\pi \sqrt{\delta^2 + (x - \mu)^2}} \; e^{\delta \gamma + \beta (x - \mu)}

K_j denotes a modified Bessel function of the third kind[1]
Mean \mu + \delta \beta / \gamma
Variance \delta\alpha^2/\gamma^3
Skewness 3 \beta /(\alpha \sqrt{\delta \gamma})
Ex. kurtosis 3(1+4 \beta^2/\alpha^2)/(\delta\gamma)
MGF e^{\mu z + \delta (\gamma - \sqrt{\alpha^2 -(\beta +z)^2})}
CF e^{i\mu z + \delta (\gamma - \sqrt{\alpha^2 -(\beta +iz)^2})}

The normal-inverse Gaussian distribution (NIG) is continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the inverse Gaussian distribution. The NIG distribution was noted by Blaesild in 1977 as a subclass of the generalised hyperbolic distribution discovered by Ole Barndorff-Nielsen,[2] in the next year Barndorff-Nielsen published the NIG in another paper.[3] It was introduced in the mathematical finance literature in 1997.[4]

The parameters of the normal-inverse Gaussian distribution are often used to construct a heaviness and skewness plot called the NIG-triangle.[5]


  • Properties 1
    • Moments 1.1
    • Linear transformation 1.2
    • Summation 1.3
    • Convolution 1.4
  • Related Distributions 2
  • Stochastic Process 3
  • References 4



The fact that there is a simple expression for the moment generating function implies that simple expressions for all moments are available.[6][7]

Linear transformation

This class is closed under affine transformations, since it is a particular case of the Generalized hyperbolic distribution, which has the same property.


This class is infinitely divisible, since it is a particular case of the Generalized hyperbolic distribution, which has the same property.


The class of normal-inverse Gaussian distributions is closed under convolution in the following sense:[8] if X_1 and X_2 are independent random variables that are NIG-distributed with the same values of the parameters \alpha and \beta, but possibly different values of the location and scale parameters, \mu_1, \delta_1 and \mu_2, \delta_2, respectively, then X_1 + X_2 is NIG-distributed with parameters \alpha, \beta, \mu_1+\mu_2 and \delta_1 + \delta_2.

Related Distributions

The class of NIG distributions is a flexible system of distributions that includes fat-tailed and skewed distributions, and the normal distribution, N(\mu,\sigma^2), arises as a special case by setting \beta=0, \delta=\sigma^2\alpha, and letting \alpha\rightarrow\infty.

Stochastic Process

The normal-inverse Gaussian distribution can also be seen as the marginal distribution of the normal-inverse Gaussian process which provides an alternative way of explicitly constructing it. Starting with a drifting Brownian motion (Wiener process), W^{(\gamma)}(t)=W(t)+\gamma t, we can define the inverse Gaussian process A_t=\inf\{s>0:W^{(\gamma)}(s)=\delta t\}. Then given a second independent drifting Brownian motion, W^{(\beta)}(t)=\tilde W(t)+\beta t, the normal-inverse Gaussian process is the time-changed process X_t=W^{(\beta)}(A_t). The process X(t) at time 1 has the normal-inverse Gaussian distribution described above. The NIG process is a particular instance of the more general class of Lévy processes.


  1. ^ Ole E Barndorff-Nielsen, Thomas Mikosch and Sidney I. Resnick, Lévy Processes: Theory and Applications, Birkhäuser 2013 Note: in the literature this function is also referred to as Modified Bessel function of the third kind
  2. ^ Barndorff-Nielsen, Ole (1977). "Exponentially decreasing distributions for the logarithm of particle size". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (The Royal Society) 353 (1674): 401–409.  
  3. ^ O. Barndorff-Nielsen, Hyperbolic Distributions and Distributions on Hyperbolae, Scandinavian Journal of Statistics 1978
  4. ^ O. Barndorff-Nielsen, Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling, Scandinavian Journal of Statistics 1997
  5. ^ S.T Rachev, Handbook of Heavy Tailed Distributions in Finance, Volume 1: Handbooks in Finance, Book 1, North Holland 2003
  6. ^ Erik Bolviken, Fred Espen Beth, Quantification of Risk in Norwegian Stocks via the Normal Inverse Gaussian Distribution, Proceedings of the AFIR 2000 Colloquium
  7. ^ Anna Kalemanova, Bernd Schmid, Ralf Werner, The Normal inverse Gaussian distribution for synthetic CDO pricing, Journal of Derivatives 2007
  8. ^ Ole E Barndorff-Nielsen, Thomas Mikosch and Sidney I. Resnick, Lévy Processes: Theory and Applications, Birkhäuser 2013
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.