#jsDisabledContent { display:none; } My Account |  Register |  Help
 Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Open-circuit test

Article Id: WHEBN0037478118
Reproduction Date:

 Title: Open-circuit test Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Open-circuit test

The open-circuit test, or "no-load test", is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer.

## Contents

• Method 1
• Calculations 2
• Impedance 2.1
• Admittance 2.2
• References 3
• See also 4

## Method

The secondary of the transformer is left open-circuited. A wattmeter is connected to the primary. An ammeter is connected in series with the primary winding. A voltmeter is optional since the applied voltage is the same as the voltmeter reading. Rated voltage is applied at primary.

If the applied voltage is normal voltage then normal flux will be set up. Since iron loss is a function of applied voltage, normal iron loss will occur. Hence the iron loss is maximum at rated voltage. This maximum iron loss is measured using the wattmeter. Since the impedance of the series winding of the transformer is very small compared to that of the excitation branch, all of the input voltage is dropped across the excitation branch. Thus the wattmeter measures only the iron loss. This test only measures the combined iron losses consisting of the hysteresis loss and the eddy current loss. Although the hysteresis loss is less than the eddy current loss, it is not negligible. The two losses can be separated by driving the transformer from a variable frequency source since the hysteresis loss varies linearly with supply frequency and the eddy current loss varies with the square.

Since the secondary of the transformer is open, the primary draws only no-load current, which will have some copper loss. This no-load current is very small and because the copper loss in the primary is proportional to the square of this current, it is negligible. There is no copper loss in the secondary because there is no secondary current.

Current, voltage and power are measured at the primary winding to ascertain the admittance and power-factor angle.

Another method of determining the series impedance of a real transformer is the short circuit test.

## Calculations

The current \mathbf{I_0} is very small.

If \mathbf{W} is the wattmeter reading then,

\mathbf{W} = \mathbf{V_1} \mathbf{I_0} \cos \phi_0

That equation can be rewritten as,

\cos \phi_0 = \frac {\mathbf{W}} {\mathbf{V_1} \mathbf{I_0}}

Thus,

\mathbf{I_m} = \mathbf{I_0} \sin \phi_0
\mathbf{I_w} = \mathbf{I_0} \cos \phi_0

### Impedance

By using the above equations, \mathbf{X_0} and \mathbf{R_0} can be calculated as,

\mathbf{X_0} = \frac {\mathbf{V_1}} {\mathbf{I_m}}

\mathbf{R_0} = \frac {\mathbf{V_1}} {\mathbf{I_w}}

Thus,

\mathbf{Z_0} = \sqrt {\mathbf{R_0}^2 +\mathbf{X_0}^2}

or

\mathbf{Z_0} = \mathbf{R_0} + \mathbf{j} \mathbf{X_0}

### Admittance

The admittance is the inverse of impedance. Therefore,

\mathbf{Y_0} = \frac {1} {\mathbf{Z_0}}

The conductance \mathbf{G_0} can be calculated as,

\mathbf{G_0} = \frac {\mathbf{W}} {\mathbf{V_1}^2}

Hence the susceptance,

\mathbf{B_0} = \sqrt {\mathbf{Y_0}^2 -\mathbf{G_0}^2}

or

\mathbf{Y_0} = \mathbf{G_0} + \mathbf{j} \mathbf{B_0}

Here,

\mathbf{W} is the wattmeter reading

\mathbf{V_1} is the applied rated voltage

\mathbf{I_0} is the no-load current

\mathbf{I_m} is the magnetizing component of no-load current

\mathbf{I_w} is the core loss component of no-load current

\mathbf{Z_0} is the exciting impedance

\mathbf{Y_0} is the exciting admittance

## References

• Kosow (2007). Electric Machinery and Transformers. Pearson Education India.
• Smarajit Ghosh (2004). Fundamentals of Electrical and Electronics Engineering. PHI Learning Pvt. Ltd.
• Wildi, Wildi Theodore (2007). Electrical Machines , Drives And Power Systems, 6th edtn. Pearson.

## See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.