World Library  
Flag as Inappropriate
Email this Article

Paroxysmal depolarizing shift

Article Id: WHEBN0026810358
Reproduction Date:

Title: Paroxysmal depolarizing shift  
Author: World Heritage Encyclopedia
Language: English
Subject: Epilepsy, PDS
Publisher: World Heritage Encyclopedia

Paroxysmal depolarizing shift

A paroxysmal depolarizing shift (PDS) is a cellular manifestation of epilepsy. First, there is a Ca2+ mediated depolarization, which causes voltage gated Na+ to open, resulting in action potentials. This depolarization is followed by a period of hyper-polarization mediated by Ca2+-dependent K+ channels or GABA-activated Cl- influx.

It is noteworthy that unmasking persistent sodium current in presence of Calcium channel blocker has been well established. It is likely that calcium channel blocker will block voltage and ligand gated Calcium channel, thereby affecting calcium-activated potassium channel in invertebrate model system. The initiation of PDS without blocking any channel are much more prevalent in mammalian neurons, for example, thalamocoritical neuron, CA3 pyramidal neuron, and some hypothalamic neurons. The possibility of spontaneous bursting in these neurons are implicated in regulating hormonal secretion. The significance of PDS may increase the signal-to-noise ratio, plays vital role in information processing, synaptic plasticity and among others. In contrast, the PDSs could be generated by electrical or chemical stimulation to single neurons.

Depending on influx of ions, PDS can be theoretically categorized into two type. Ca2+ dependent PDS requires the entry of Ca2+ while Na+ dependent PDS is presumed to be non-synaptic.[1][2]

The PDS found in invertebrates like Helix, and higher vertebrates are assumed to predominantly generated by activation of AMPA receptor subsequently leading to activation of NMDA receptor. The evidence shows that there is probable increase in intracellular calcium ions, which sustained calcium-dependent PDS. As usual, this Ca-ions will activate calcium dependent potassium channel and PDS will terminate. This is the case of that provides clue for synaptic transmission.

Alternatively the PDS can still occur and less frequently studied in blocking calcium channel with heavy metals such as Ni2+.[1] The further evidence for Na+ dependent PDS are highlighted in leech with the possibility to study PDS in detail.[1][3] It is likely that such type of PDS sustained in absence of Calcium, the case represents the non-synaptic nature of PDS. Finally, the Na/K pump and Calcium activated potassium channel might play a role in terminating PDS. Paradoxically, there might arise the argument whether intracellular calcium could able to repolarize the single neuron while blocking these calcium entry from extracellular milleu. However, the other opportunity such as Na+-Ca2+ exchange as well as small contribution from intracellular stores need to be explored.

If several million neurons discharge at once, it shows up on a scalp EEG as a focal interictal epileptiform spike. Paroxysmal depolarizing shifts can lead to an epileptic seizure if there is an underlying predisposition, and recording the spike can be an important aid in distinguishing seizure types.





This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.