World Library  
Flag as Inappropriate
Email this Article

Phage ecology

Article Id: WHEBN0006420688
Reproduction Date:

Title: Phage ecology  
Author: World Heritage Encyclopedia
Language: English
Subject: Landscape ecology, Bacteriophage, Microbial population biology, Bacteriophages, Recruitment (biology)
Collection: Bacteriophages, Ecology, Microbial Population Biology
Publisher: World Heritage Encyclopedia

Phage ecology

, are the viruses of bacteria (more generally, of prokaryotes[1]). Phage ecology is the study of the interaction of bacteriophages with their environments.[2]


  • Introduction to phage ecology 1
    • Vastness of phage ecology 1.1
    • Studying phage ecology 1.2
  • Phage "organismal" ecology 2
    • Historical overview 2.1
    • Methods 2.2
  • Phage population ecology 3
  • Phage community ecology 4
    • Relationship with bacteria 4.1
  • Phage ecosystem ecology 5
  • Notes 6
  • External links 7

Introduction to phage ecology

Vastness of phage ecology

Phages are obligate intracellular parasites meaning that they are able to reproduce only while infecting bacteria. Phages therefore are found only within environments that contain bacteria. Most environments contain bacteria, including our own bodies (called normal flora). Often these bacteria are found in large numbers. As a consequence, phages are found almost everywhere.

As a

Bacteria (along with archaea) appear to be highly diverse and there possibly are millions of species.[6] Phage-ecological interactions therefore are quantitatively vast: huge numbers of interactions. Phage-ecological interactions are also qualitatively diverse: There are huge numbers of environment types, bacterial-host types,[7] and also individual phage types[8]).

Studying phage ecology

The study of phage ecology reflects established scientific disciplines in ecological studies in scope, the most obvious being general , population ecology, community ecology, and ecosystem ecology. Phage ecology also may be considered (though mostly less well formally explored) from perspectives of phage behavioral ecology, evolutionary ecology, functional ecology, landscape ecology, mathematical ecology, molecular ecology, physiological ecology (or ecophysiology), and spatial ecology. Phage ecology additionally draws (extensively) from microbiology, particularly in terms of environmental microbiology, but also from an enormous catalog (90 years) of study of phage and phage-bacterial interactions in terms of their physiology and, especially, their molecular biology.

Phage "organismal" ecology

Phage "organismal" ecology is primarily the study of the evolutionary ecological impact of phage growth parameters:

  • latent period, plus
    • eclipse period (or simply "eclipse")
    • rise period (or simply "rise")
  • burst size, plus
    • rate of intracellular phage-progeny maturation
  • adsorption constant, plus
    • rates of virion diffusion
    • virion decay (inactivation) rates
  • host range, plus
    • resistance to restriction
    • resistance to abortive infection
  • various temperate-phage properties, including
  • the tendency of at least some phage to enter into (and then subsequently leave) a not very well understood state known (inconsistently) as pseudolysogeny[9][10]

Another way of envisioning phage "organismal" ecology is that it is the study of phage adaptations that contribute to phage survival and transmission to new hosts or environments. Phage "organismal" ecology is the most closely aligned of phage ecology disciplines with the classical molecular and molecular genetic analyses of bacteriophage.

From the perspective of phage experimental adaptation studies.

Historical overview

In the mid 1910s, when phage were first discovered, the concept of phage was very much a

This somewhat whole-organismal view of phage biology saw its heyday during the 1940s and 1950s, before giving way to much more model systems.


The basic experimental toolkit of phage "organismal" ecology consists of the single-step growth (or one-step growth;[12]) experiment and the phage adsorption curve.[13] Single-step growth is a means of determining the phage latent period (example), which is approximately equivalent (depending on how it is defined) to the phage period of infection. Single-step growth experiments also are employed to determine a phage's burst size, which is the number of phage (on average) that are produced per phage-infected bacterium.

The adsorption curve is obtained by measuring the rate at which phage virion particles (see Virion#Structure) attach to bacteria. This is usually done by separating free phage from phage-infected bacteria in some manner so that either the loss of not currently infecting (free) phage or the gain of infected bacteria may be measured over time.

Phage population ecology

A population is a group of individuals which either do or can interbreed or, if incapable of interbreeding, then are recently derived from a single individual (a clonal population). Population ecology considers characteristics that are apparent in populations of individuals but either are not apparent or are much less apparent among individuals. These characteristics include so-called intraspecific interactions, that is between individuals making up the same population, and can include competition as well as cooperation. Competition can be either in terms of rates of population growth (as seen especially at lower population densities in resource-rich environments) or in terms of retention of population sizes (seen especially at higher population densities where individuals are directly competing over limited resources). Respectively, these are population-density independent and dependent effects.

Phage population ecology considers issues of rates of phage population growth, but also phage-phage interactions as can occur when two or more phage adsorb an individual bacterium.

Phage community ecology

A community consists of all of the biological individuals found within a given environment (more formally, within an ecosystem), particularly when more than one species is present. Community ecology studies those characteristics of communities that either are not apparent or which are much less apparent if a community consists of only a single population. Community ecology thus deals with interspecific interactions. Interspecific interactions, like intraspecific interactions, can range from cooperative to competitive but also to quite antagonistic (as are seen, for example, with predator-prey interactions). An important consequence of these interactions is coevolution.

Relationship with bacteria

The interaction of phage with

  • The Bacteriophage Ecology Group (BEG): Home of Phage Ecology and Phage Evolutionary Biology (
  • The Virus Ecology Group (VEG)
  • An online, searchable phage ecology bibliography can be found here (>6000 references).
  • An interactive model for an evolving ecology of phages and bacteria.

External links

  1. ^ The term "prokaryotes" is useful to mean the sum of the bacteria and archaea but otherwise can be controversial, as discussed by ; see also pp. 103–4 of
    provides a history.
  2. ^ This article on phage ecology was expanded from a stub during the writing of the first chapter of the edited monograph, Bacteriophage Ecology (forecasted publication date: March, 2008, Cambridge University Press), in order to be cited by that chapter especially as a repository of phage ecology review chapters and articles.
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^
  11. ^
  12. ^ a b
  13. ^
  14. ^ [4]
  15. ^
  16. ^
  17. ^
  18. ^
  19. ^
  20. ^
  21. ^
  22. ^


Phage impact the movement of nutrients and energy within ecosystems primarily by lysing bacteria. Phage can also impact abiotic factors via the encoding of exotoxins (a subset of which are capable of solubilizing the biological tissues of living animals[3]). Phage ecosystem ecologists are primarily concerned with the phage impact on the global carbon cycle, especially within the context of a phenomenon known as the microbial loop.

An nutrients and energy.

Phage ecosystem ecology

Phage are also capable of interacting with species other than bacteria, e.g., such as phage-encoded exotoxin interaction with animals.[22] Phage therapy is an example of applied phage community ecology.

A third way that bacteria have managed to escape the effects of bacteriophage is by abortive infection. This is a last resort option- when the host cell has already been infected by the phage. This method is not ideal for the host cell, as it still leads to its death. The redeeming feature of this mechanism is the fact that it interferes with the phage processes and prevents it from then moving on to infect other cells.[21]

Another mechanism employed by bacteria is referred to as CRISPR. This stands for “clustered regularly interspersed palindromic repeats” which means that the immunity to phages by bacteria has been acquired via adding spacers of DNA that are identical to that of the DNA from the phage. Some phage have been found to be immune to this mechanism as well. In some way or another, the phage have managed to get rid of the sequence that would be replicated.

Bacteria have developed multiple defense mechanisms to fight off the effects of bacteriophage.[16] In experimentation, amount of resistance can be determined by how much of a plate (generally agar with bacteria, infected with phage) ends up being clear. The clearer, the less resistant as more bacteria have been lysed.[17] The most common of these defense mechanisms is called the restriction-modification system (RM system). In this system, foreign DNA trying to enter the bacterial host is restricted by endonucleases that recognize specific base pairs within the DNA, while the DNA of the cell is protected from restriction due to methylase. [18] RM systems have evolved to keep up with the ever-changing bacteria and phage. In general, these RM types differ in the nucleotide sequences that they recognize.[19] However, there is an occasional slip where the endonuclease misses the DNA sequence of the phage and the phage DNA is able to enter the cell anyway, becoming methylated and protected against the endonuclease. This accident is what can spur the evolution of the RM system. Phage can acquire or use the enzyme from the host cell to protect their own DNA, or sometimes they will have proteins that dismantle the enzyme that is meant to restrict the phage DNA.[20] Another option is for the phage to insert different base pairs into its DNA, thereby confusing the enzyme.

This relationship is important to understand as phage are now being used for more practical and medicinal purposes. [15]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.