World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000041644
Reproduction Date:

Title: Reflectivity  
Author: World Heritage Encyclopedia
Language: English
Subject: Fresnel equations, Tone reproduction, Empirical theory of perception, Reflection coefficient, Reflectance difference spectroscopy
Publisher: World Heritage Encyclopedia


Spectral reflectance curves for aluminium (Al), silver (Ag), and gold (Au) metal mirrors at normal incidence.

Reflectivity or reflectance is the fraction of incident electromagnetic power that is reflected at an interface, in contrast to the reflection coefficient, which is the ratio of the reflected to incident electric field.[1]


Fresnel reflection coefficients for a boundary surface between air and a variable material in dependence of the complex refractive index and the angle of incidence

The reflectance or reflectivity is the square of the magnitude of the reflection coefficient.[2] The reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance (or reflectivity) is always a positive real number.

According to the CIE (the International Commission on Illumination),[3] reflectivity is distinguished from reflectance by the fact that reflectivity is a value that applies to thick reflecting objects.[4] When reflection occurs from thin layers of material, internal reflection effects can cause the reflectance to vary with surface thickness. Reflectivity is the limit value of reflectance as the sample becomes thick; it is the intrinsic reflectance of the surface, hence irrespective of other parameters such as the reflectance of the rear surface. Another way to interpret this is that the reflectance is the fraction of electromagnetic power reflected from a specific sample, while reflectivity is a property of the material itself, which would be measured on a perfect machine if the material filled half of all space.[5]

The reflectance spectrum or spectral reflectance curve is the plot of the reflectance as a function of wavelength.

Surface type

Going back to the fact that reflectivity is a directional property, most surfaces can be divided into those that give specular reflection and those that give diffuse reflection.

  • For specular surfaces, such as glass or polished metal, reflectivity will be nearly zero at all angles except at the appropriate reflected angle - that is, reflected radiation will follow a different path from incident radiation for all cases other than radiation normal to the surface.
  • For diffuse surfaces, such as matte white paint, reflectivity is uniform; radiation is reflected in all angles equally or near-equally. Such surfaces are said to be Lambertian.

Most real objects have some mixture of diffuse and specular reflective properties.

Water reflectivity

Reflectivity of smooth water at 20°C (refractive index=1.333)

Reflection occurs when light moves from a medium with one index of refraction into a second medium with a different index of refraction.

Specular reflection from a body of water is calculated by the Fresnel equations.[6] Fresnel reflection is directional and therefore does not contribute significantly to albedo which is primarily diffuse reflection.

A real water surface may be wavy. Reflectivity assuming a flat surface as given by the Fresnel equations can be adjusted to account for waviness.

Grating efficiency

The generalization of reflectance to a diffraction grating, which disperses light by wavelength, is called diffraction efficiency.


Reflectivity is an important concept in the fields of optics, solar thermal energy, telecommunication and radar.

See also


  1. ^ OpticsKlein and Furtak,
  2. ^ E. Hecht (2001). Optics (4th ed.). Pearson Education. ISBN 0-8053-8566-5.
  3. ^ CIE (the International Commission on Illumination)
  4. ^ CIE International Lighting Vocabulary
  5. ^ The Art of RadiometryPalmer and Grant,
  6. ^ Ottaviani, M. and Stamnes, K. and Koskulics, J. and Eide, H. and Long, S.R. and Su, W. and Wiscombe, W., 2008: 'Light Reflection from Water Waves: Suitable Setup for a Polarimetric Investigation under Controlled Laboratory Conditions. Journal of Atmospheric and Oceanic Technology, 25 (5), 715--728.

External links

  • reflectivity of metals (chart)
  • Reflectance Data Painted surfaces etc.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.