Ss-433

SS 433

Artist's impression of SS 433
Observation data
Epoch J2000.0      Equinox J2000.0 (ICRS)
Constellation Aquila
Right ascension 19h 11m 49.56s[1]
Declination +04° 58′ 57.6″[1]
Apparent magnitude (V)14.2[1]
Characteristics
Spectral typeA7Ib
Variable typeEclipsing Binary
Astrometry
Distance18000±700 ly
(5500±200[2] pc)
Other designations
V* V1343 Aql, GAL 039.7-02.0, 2MASS J19114957+0458578, USNO 659, 1A 1909+04, 87GB 190920.8+045332, NEK 40.1-02.1, 3A 1909+048, GPS 1909+049, RGB J1911+049, BWE 1909+0453, GRS 039.60 -01.80, RX J1911.7+0459, 4C 04.66, 1H 1908+047, 1RXS J191149.7+045857, 2E 1909.3+0453, HBHA 204-02, AAVSO 1906+04, 2E 4204, INTEGRAL1 110, TXS 1909+048, 1ES 1909+04.8, INTREF 969, 4U 1908+05.
Database references
data

SS 433 is one of the most exotic star systems observed. It is an eclipsing X-ray binary system, with the primary most likely a black hole, or possibly a neutron star.[3], pp. 23–24. The spectrum of the secondary companion star suggests that it is a late A-type star.[4] SS 433 is a microquasar, the first discovered.[5]

SS 433's designation comes from its catalogers, Case Western Reserve astronomers Nicholas Sanduleak and C. Bruce Stephenson. It was the 433rd entry in their 1977 catalog of stars with strong emission lines.[5]

Location

System

The compact central object is consuming the companion star which rapidly loses mass into an accretion disc formed around the central object. The accretion disc is subject to extreme heating as it spirals into the primary and this heating causes the accretion disc to give off intense X-rays and opposing jets of hot hydrogen along the axis of rotation, above and below the plane of the accretion disc. The material in the jets travels at 26% of the speed of light.[3], pp. 23–24; [6], p. 508. The companion star presumably had lower mass than the original primary object and was therefore longer lived. Estimates for its mass range from 3[3], p. 25 to 30[7] solar masses. The primary and secondary orbit each other at a very close distance in stellar terms, with an orbital period of 13.1 days.[6], p. 510.

Observational data

The jets from the primary are emitted perpendicular to its accretion disk. The jets and disk precess around an axis inclined about 79° to a line between us and SS 433. The angle between the jets and the axis is around 20°, and the precessional period is around 162.5 days.[3] Precession means that the jets sometimes point more towards the Earth, and sometimes more away, producing both blue and red Doppler shifts in the observed visible spectrum.[6], p. 508. Also, the precession means that the jets corkscrew through space in an expanding helical spray.[8] As they impact the surrounding W50 supernova remnant clouds, they distort it into an elongated shape.[9]

Observations in 2004 by the Very Long Baseline Array for 42 consecutive days gave new data and understanding of the action of the jets. It appears that the jets are sometimes impacting material shortly after being created and thus brightening. The material the jets are impacting appears to be replaced some of the time, but not always, leading to variations in the brightening of the jets.[10][11]

The spectrum of SS 433 is affected not just by Doppler shifts but also by relativity: when the effects of the Doppler shift are subtracted, there is a residual redshift which corresponds to a velocity of about 12,000 kilometers per second. This does not represent an actual velocity of the system away from the Earth; rather, it is due to time dilation, which makes moving clocks appear to stationary observers to be ticking more slowly. In this case, the relativistically moving excited atoms in the jets appear to vibrate more slowly and their radiation thus appears red-shifted.[6], p. 508.

References

Further reading

  • Observations of SS 433, Bruce Margon, in Annual review of astronomy and astrophysics, volume 22, Palo Alto, CA: Annual Reviews, Inc., 1984, pp. 507–536. DOI 10.1146/annurev.aa.22.090184.002451.
  • The Quest for SS433, David H. Clark. New York: Viking, 1985. ISBN 0-670-80388-X.

, +04° 58′ 57.6″

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.