World Library  
Flag as Inappropriate
Email this Article

Schismatic temperament

Article Id: WHEBN0000443740
Reproduction Date:

Title: Schismatic temperament  
Author: World Heritage Encyclopedia
Language: English
Subject: 53 equal temperament, Musical tuning, Regular temperament, Just intonation, Equal temperament
Collection: Linear Temperaments
Publisher: World Heritage Encyclopedia

Schismatic temperament

A schismatic temperament is a musical tuning system that results from tempering the schisma of 32805:32768 (1.9537 cents) to a unison. It is also called the schismic temperament, Helmholtz temperament, or quasi-Pythagorean temperament.


  • Construction 1
  • Comparison with other tunings 2
  • History of schismatic temperaments 3
  • References 4
  • External links 5


Tonnetz for Pythagorean tuning (above) and schismatic temperament (below)

In Pythagorean tuning all notes are tuned as a number of perfect fifths (701.96 cents About this sound play  ). The major third above C, E, is considered four fifths above C. This causes the Pythagorean major third, E+ (407.82 cents About this sound play  ), to differ from the just major third, E (386.31 cents About this sound play  ): the Pythagorean third is sharper than the just third by 21.51 cents (a syntonic comma About this sound play  ).

C — G — D — A+E+

Ellis's "skhismic temperament"[1] instead uses the note eight fifths below C, F-- (384.36 cents About this sound play  ), the Pythagorean diminished fourth or schismatic major third. Though spelled "incorrectly" for a major third, this note is only 1.95 cents (a schisma) flat of E, and thus more in tune than the Pythagorean major third. As Ellis puts it, "the Fifths should be perfect and the Skhisma should be disregarded [accepted/ignored]."

E+ \approx F--
F-- — C-- — G-- — D-- — A- — E- — B- — F — C

In his eighth-schisma "Helmholtzian temperament"[1] the note eight fifths below C is also used as the major third above C. However, in the "skhismic temperament" pure perfect fifths are used to construct an approximate major third, while in the "Helmholtzian temperament" approximate perfect fifths are used to construct a pure major third. To raise the Pythagorean diminished fourth 1.95 cents to a just major third each fifth must be narrowed, or tempered, by 1.95/8 = 0.24 cents. Thus the fifth becomes 701.71 cents instead of 701.96 cents. As Ellis puts it, "the major Thirds are taken perfect, and the Skhisma is disregarded [tempered out]."

E \approx F--
E\approxC--\approxG--\approxD--\approxA-\approxE-\approxB-\approxF — C

Compare About this sound Pythagorean   vs. About this sound Skhismic  .

Comparison with other tunings

Whereas schismatic temperaments achieve a ratio with a number perfect fifths, each tempered by a fraction of the schisma; meantone temperaments achieve a ratio with perfect fifths, each tempered by a fraction of the syntonic comma (81:80, 21.51 cents). As meantone temperaments are often described by what fraction of the syntonic comma is used to alter the perfect fifths, schismatic temperaments are often described by what fraction of the schisma is used to alter the perfect fifths (thus quarter-comma meantone temperament, eighth-schisma temperament, etc.).

In both eighth-schisma tuning and quarter-comma meantone the octave and major third are just, but eighth-schisma has much much more accurate perfect fifths and minor thirds (less than a quarter of a cent off from just intonation). However, quarter-comma meantone has a large advantage in that the major third and minor third are spelled as such, whereas in schismatic tunings, they're represented by the diminished fourth and augmented second (if spelled according to their construction in the tuning). This places them well outside the span of a single diatonic scale, and requires both a larger number of pitches and more microtonal pitch-shifting when attempting common-practice Western music.

Various equal temperaments lead to schismatic tunings which can be described in the same terms. Dividing the octave by 53 provides an approximately 1/29-schisma temperament; by 65 a 1/5-schisma temperament, by 118 a 2/15-schisma temperament, and by 171 a 1/10-schisma temperament. The last named, 171, produces very accurate septimal intervals, but they are hard to reach, as to get to a 7/4 requires 39 fifths. The −1/11-schisma temperament of 94, with sharp rather than flat fifths, gets to a less accurate but more available 7:4 by means of 14 fourths. Eduardo Sabat-Garibaldi also had an approximation of 7:4 by means of 14 fourths in mind when he derived his 1/9-schisma tuning.

History of schismatic temperaments

Historically significant is the eighth-schisma tuning of just intonation. A 1/9-schisma tuning has also been proposed by Eduardo Sabat-Garibaldi, who together with his students uses a 53-tone to the octave guitar with this tuning.

Mark Lindley and Ronald Turner-Smith argue that schismatic tuning was briefly in use during the late medieval period.[2] This was not temperament but merely 12-tone Pythagorean tuning. Justly tuned fifths and fourths generate a reasonable schismatic tuning and therefore schismatic is in some respects an easier way to introduce approach justly tuned thirds into a Pythagorean harmonic fabric than meantone. However, the result suffers from the same difficulties as just intonation – for example, the wolf B-G here arises all too easily when availing oneself of the concordant schismatic substitutions just outlined – so it is not surprising that meantone temperament became the dominant tuning system by the early Renaissance. Helmholtz's and Groven's systems get around some, but not all, of these difficulties by including multiple tunings for each key on the keyboard, so that a particular note can be tuned as G in some contexts and F in others, for example.


  1. ^ a b Helmholtz, Hermann; Ellis, Alexander J. (1885),  . On the Sensations of Tone on Internet Archive
  2. ^  

External links

  • "Schismic Temperaments", Intonation Information.
  • "Schismatic family", Xenharmonic (microtonal wiki).
  • "Schismic", Tonalsoft(R) - Encyclopedia of microtonal music theory.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.