World Library  
Flag as Inappropriate
Email this Article

Segment addition postulate

Article Id: WHEBN0020019227
Reproduction Date:

Title: Segment addition postulate  
Author: World Heritage Encyclopedia
Language: English
Subject: Line segment, Logic, Index of logic articles
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Segment addition postulate

In geometry, the segment addition postulate states that given two points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC. This is related to the triangle inequality, which states that AB + BC \geq AC with equality if and only if A, B, and C are collinear (on the same line). This in turn is equivalent to the proposition that the shortest distance between two points lies on a straight line.

The segment addition postulate is often useful in proving results on the congruence of segments.

External links

  • http://www.course-notes.org/Geometry/Segments_and_Rays/Segment_Addition_Postulate
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.