World Library  
Flag as Inappropriate
Email this Article

Serial communication

Article Id: WHEBN0000194114
Reproduction Date:

Title: Serial communication  
Author: World Heritage Encyclopedia
Language: English
Subject: PCI Express, IEEE 1394, RS-232, Digital signal, Physical layer
Collection: Physical Layer Protocols, Serial Buses
Publisher: World Heritage Encyclopedia

Serial communication

In telecommunication and computer science, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels.

Serial communication is used for all long-haul communication and most computer networks, where the cost of cable and synchronization difficulties make parallel communication impractical. Serial computer buses are becoming more common even at shorter distances, as improved signal integrity and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or SerDes) and to outstrip its disadvantages (clock skew, interconnect density). The migration from PCI to PCI Express is an example.


  • Cables that carry serial data 1
  • Serial buses 2
  • Serial versus parallel 3
  • Examples of serial communication architectures 4
  • See also 5
  • External links 6

Cables that carry serial data

Many serial communication systems were originally designed to transfer data over relatively large distances through some sort of data cable.

The term "serial" most often refers to the RS232 port on the back of the original IBM PC, often called "the" serial port, and "the" serial cable designed to plug into it, and the many devices designed to be compatible with it.

Practically all long-distance communication transmits data one bit at a time, rather than in parallel, because it reduces the cost of the cable. The cables that carry this data (other than "the" serial cable) and the computer ports they plug into are usually referred to with a more specific name, to reduce confusion.

Keyboard and mouse cables and ports are almost invariably serial -- such as PS/2 port and Apple Desktop Bus and USB.

The cables that carry digital video are almost invariably serial -- such as coax cable plugged into a HD-SDI port, a webcam plugged into a USB port or Firewire port, Ethernet cable connecting an IP camera to a Power over Ethernet port, FPD-Link, etc.

Other such cables and ports, transmitting data one bit at a time, include Serial ATA, Serial SCSI, Ethernet cable plugged into Ethernet ports, the Display Data Channel using previously reserved pins of the VGA connector or the DVI port or the HDMI port.

Serial buses

Many communication systems were generally originally designed to connect two integrated circuits on the same printed circuit board, connected by signal traces on that board (rather than external cables).

Integrated circuits are more expensive when they have more pins. To reduce the number of pins in a package, many ICs use a serial bus to transfer data when speed is not important. Some examples of such low-cost serial buses include SPI, I²C, UNI/O, and 1-Wire.

Serial versus parallel

The communication links across which computers—or parts of computers—talk to one another may be either serial or parallel. A parallel link transmits several streams of data simultaneously along multiple channels (e.g., wires, printed circuit tracks, or optical fibres); whereas, a serial link transmits only a single stream of data.

Although a serial link may seem inferior to a parallel one, since it can transmit less data per clock cycle, it is often the case that serial links can be clocked considerably faster than parallel links in order to achieve a higher data rate. A number of factors allow serial to be clocked at a higher rate:

  • Clock skew between different channels is not an issue (for unclocked asynchronous serial communication links).
  • A serial connection requires fewer interconnecting cables (e.g., wires/fibres) and hence occupies less space. The extra space allows for better isolation of the channel from its surroundings.
  • Crosstalk is less of an issue, because there are fewer conductors in proximity.

In many cases, serial is a better option because it is cheaper to implement. Many ICs have serial interfaces, as opposed to parallel ones, so that they have fewer pins and are therefore less expensive.

Examples of serial communication architectures

See also

External links

  • Serial Interface Tutorial for Robotics (contains many practical examples)
  • Serial interfaces listing (with pinouts)
  • Wiki: Serial Ports
  • Visual studio 2008 coding for Serial communication
  • Introduction to I²C and SPI protocols
  • Serial communication introduction
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.