World Library  
Flag as Inappropriate
Email this Article

Spectral linewidth

Article Id: WHEBN0003061772
Reproduction Date:

Title: Spectral linewidth  
Author: World Heritage Encyclopedia
Language: English
Subject: Hydroxide, Uncertainty principle, Spectral width, Absorption band, Injection seeder, Oscillator linewidth, Quantum dot display
Publisher: World Heritage Encyclopedia

Spectral linewidth

The spectral linewidth characterizes the width of a spectral line, such as in the electromagnetic emission spectrum of an atom, or the frequency spectrum of an acoustic or electronic system. For example, the emission of an atom usually has a very thin spectral linewidth, as only transitions between discrete energy levels are allowed, leading to emission of photons with a certain energy.

Several definitions are used to quantify the spectral linewidth, e.g. the full width at half maximum (FWHM).

While the spectral width of a resonator in electronics depends on the parameters of the components, and therefore can be easily adjusted over a wide range, linewidths are typically more difficult to adjust in physics. For example, even a resting atom which does not interact with its environment has a non-zero linewidth, called the natural linewidth (also called the decay width), which is a consequence of the Fourier transform limit (classical description) and the Heisenberg uncertainty principle (quantum mechanical description). According to the uncertainty principle the uncertainty in energy, ΔE, of a transition is inversely proportional to the lifetime, Δt of the excited state:

\Delta E \Delta t \gtrapprox \frac{\hbar}{2}.

In practice lines are further broadened by effects such as Doppler broadening.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.