World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0001859006
Reproduction Date:

Title: Spiroplasma  
Author: World Heritage Encyclopedia
Language: English
Subject: Entomoplasmatales, Transmissible spongiform encephalopathy, Danaus dorippus, Mollicutes, Forest pathology
Publisher: World Heritage Encyclopedia


Scientific classification
Kingdom: Bacteria
Phylum: Tenericutes
Class: Mollicutes
Order: Entomoplasmatales
Family: Spiroplasmataceae
Genus: Spiroplasma

Spiroplasma is a genus of in vitro. Typically they grow well at 30 °C, but not at 37 °C. A few species, notably Spiroplasma mirum, grow well at 37 °C (human body temperature), and cause cataracts and neurological damage in suckling mice. The best studied species of spiroplasmas are Spiroplasma citri, the causative agent of Citrus Stubborn Disease, and Spiroplasma kunkelii, the causative agent of Corn Stunt Disease.


  • Human pathogenicity 1
  • Insect symbioses 2
  • References 3
  • External links 4

Human pathogenicity

Corn Stunt Spiroplasma in phloem cells. Thick section (0.4 micrometers) observed in a TEM. Magnified 75,000X.

There is some disputed evidence for the role of spiroplasmas in the etiology of Transmissible Spongiform Encephalopathies (TSEs), due primarily to the work of Dr. Bastian, summarized below. Other researchers have failed to replicate this work, while the prion model for TSEs has gained very wide acceptance.[1] Recent work appears to refute the role of spiroplasmas in the best small animal scrapie model (hamsters).[2] Bastian et al. (2007) have responded to this challenge with the isolation of a spiroplasma species from scrapie-infected tissue, grown it in cell-free culture, and demonstrated its infectivity in ruminants.[3]

According to Frank O. Bastian, MD:

spiroplasmas contain internal fibrillar proteins, that have morphological and immunological similarities to scrapie- and CJD-related fibrillar proteins. This comparison is noteworthy since mycoplasmologists consider these fibril proteins unique to this prokaryote. In vivo and in vitro experimental Spiroplasma infections produce cytopathic effects similar to those of the scrapie agent. Experimental Spiroplasma brain infection in the suckling rat is characterized by vacuolar encephalopathy with localization of the microbe to gray matter. [...] Spiralins are chemically bound to Spiroplasma-associated fibrils (SpFs) and are separated with difficulty.' SpFs are unique internal fibrils of spiroplasmas with a molecular weight of 55 kDa. Recently, SpFs have been shown to bear close morphological resemblance to scrapie-associated fibrils (SAFS), ' and show cross-reactivity using SAF antibody.

Insect symbioses

Many Spiroplasma strains are endosymbionts of Drosophila species, with a variety of host-altering mechanisms similar to Wolbachia. Currently, a Spiroplasma species is receiving attention for its protective effects against parasitic nematodes in the fruit fly Drosophila neotestacea as a model for evolution through symbiosis.[4] The Spiroplasma species restores fertility in flies infected with nematodes that otherwise sterilize females. This case study highlights a growing movement to consider heritable symbionts as important drivers in patterns of evolution.[5][6] Spiroplasma are found in many insects and arthropods, including the Plain Tiger butterfly. When infected, male butterfly offspring are killed by the Spiroplasma, leading to interesting consequences for population genetics and consequently speciation.[7]


  1. ^ Leach, R. H.; Mathews, W. B. & Will, R. (1983): Creutzfeldt-Jakob disease. "Failure to detect spiroplasmas by cultivation and serological tests. Journal of Neurological Science59(3): 349-353. PMID 6348215 (HTML abstract)
  2. ^ Alexeeva, I.; Elliott, E. J.; Rollins, S.; Gasparich, G. E.; Lazar, J. & Rohwer, R. G. (2006): Absence of Spiroplasma or Other Bacterial 16S rRNA Genes in Brain Tissue of Hamsters with Scrapie. Journal of Clinical Microbiology 44(1): 91-97. PMID 16390954 doi:10.1128/JCM.44.1.91-97.2006 PDF fulltext
  3. ^ Bastian, F. O.; Sanders DE, Forbes, W.A.; Hagius, S.D.; Walker, J.V.; Henk, W.G.; Enright, F.M.& Elzer, P.H. (2007): Spiroplasma spp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants. Journal of Medical Microbiology 56(9):1235-1252. PMID 17761489 doi:10.1099/jmm.0.47159-0
  4. ^ Jaenike, J.; Unckless, L.R., Cockburn, S.N., Boelio, L.M., Perlman, S.J. (2010): "Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont. Science" 329: 212-215.
  5. ^ Jaenike, J.; Stahlhut, J.K. Boelio, L.M., Unckless, L.R. (2010): Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol. Ecol. 19(2):414-425.
  6. ^ Koch, H., Schmid-Hempel, P. (2011): Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. PNAS 108(48): 19288-19292.
  7. ^ 'Jiggins, F. M.; Hurst, G. D. D.; Jiggins, C. D.; Schulenburg, J. H. G. v. D. & Majerus, M. E. N. (2000): The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology '120'(5): 439–446. doi:10.1017/S0031182099005867 (HTML abstract)

External links

  • Spiroplasma may cause Creutzfeldt-Jakob Disease. An interview with a leading expert in infectious diseases: Frank O. Bastsian, MD.
  • Spiroplasma & Transmissible Spongiform Encephalopathies, Ed Gehrman
  • Spiroplasma Genome Projects from Genomes OnLine Database
  • Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.