World Library  
Flag as Inappropriate
Email this Article

Standard molar entropy

Article Id: WHEBN0000176550
Reproduction Date:

Title: Standard molar entropy  
Author: World Heritage Encyclopedia
Language: English
Subject: Chembox/testcases7images, Chembox/testcases3, Boric acid (data page), Phosphoryl chloride (data page), Propane (data page)
Collection: Chemical Properties, Thermodynamic Entropy
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Standard molar entropy

In chemistry, the standard molar entropy is the entropy content of one mole of substance, under standard conditions (not standard temperature and pressure ).

The standard molar entropy is usually given the symbol S°, and as units of joules per mole kelvin (J mol−1 K−1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a nonzero value of S° at room temperature. The entropy of a pure crystalline structure can be 0 J mol−1 K−1 only at 0 K, according to the third law of thermodynamics. However, this presupposes that the material forms a 'perfect crystal' without any frozen in entropy (defects, dislocations), which is never completely true because crystals always grow at a finite temperature. This residual entropy is often quite negligible.

Contents

  • Thermodynamics 1
  • Chemistry 2
  • See also 3
  • References 4
  • External links 5

Thermodynamics

If a mole of substance were at 0 K, then warmed by its surroundings to 298 K, its total molar entropy would be the addition of all N individual contributions:

S^\circ = \sum_{k=1}^N \Delta S_k =\sum_{k=1}^N \int \frac{dq_k}{T} \, dT

Here, dqk/T represents a very small exchange of heat energy at temperature T. The total molar entropy is the sum of many small changes in molar entropy, where each small change can be considered a reversible process.

Chemistry

The standard molar entropy of a gas at STP includes contributions from:[1]

Changes in entropy are associated with phase transitions and chemical reactions. Chemical equations make use of the standard molar entropy of reactants and products to find the standard entropy of reaction:[2]

ΔS°rxn = S°productsS°reactants

The standard entropy of reaction helps determine whether the reaction will take place spontaneously. According to the second law of thermodynamics, a spontaneous reaction always results in an increase in total entropy of the system and its surroundings:

ΔStotal = ΔSsystem + ΔSsurroundings > 0

See also

References

  1. ^ Kosanke, K. (2004). "Chemical Thermodynamics". Pyrotechnic chemistry. Journal of Pyrotechnics. p. 29.  
  2. ^ Chang, Raymond; Brandon Cruickshank (2005). "Entropy, Free Energy and Equilibrium". Chemistry. McGraw-Hill Higher Education. p. 765.  

External links

  • Free Energy and Chemical Reactions - Course notes for General Chemistry (R. Paselk, Humboldt State University)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.