World Library  
Flag as Inappropriate
Email this Article

Star-free language

Article Id: WHEBN0004922792
Reproduction Date:

Title: Star-free language  
Author: World Heritage Encyclopedia
Language: English
Subject: Aperiodic finite state automaton, Automata theory, Regular language, Generalized star height problem, Aperiodic semigroup
Collection: Automata Theory, Formal Languages, Logic in Computer Science
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Star-free language

A regular language is said to be star-free if it can be described by a regular expression constructed from the letters of the alphabet, the empty set symbol, all boolean operators – including complementation – and concatenation but no Kleene star.[1] For instance, the language of words over the alphabet \{a,\,b\} that do not have consecutive a's can be defined by (\emptyset^c aa \emptyset^c)^c, where X^c denotes the complement of a subset X of \{a,\,b\}^*. The condition is equivalent to having generalized star height zero.

An example of a regular language which is not star-free is \{(aa)^n \mid n \geq 0\}.[2]

Marcel-Paul Schützenberger characterized star-free languages as those with aperiodic syntactic monoids.[3][4] They can also be characterized logically as languages definable in FO[<], the first-order logic over the natural numbers with the less-than relation,[5] as the counter-free languages[6] and as languages definable in linear temporal logic.[7]

All star-free languages are in uniform AC0.

See also

References

  1. ^ Lawson (2004) p.235
  2. ^ Arto Salomaa (1981). Jewels of Formal Language Theory. Computer Science Press. p. 53.  
  3. ^  
  4. ^ Lawson (2004) p.262
  5. ^ Straubing, Howard (1994). Finite automata, formal logic, and circuit complexity. Progress in Theoretical Computer Science. Basel: Birkhäuser. p. 79.  
  6. ^ McNaughton, Robert;  
  7. ^  
  • Lawson, Mark V. (2004). Finite automata. Chapman and Hall/CRC.  
  • Diekert, Volker; Gastin, Paul (2008). "First-order definable languages". In Jörg Flum; Erich Grädel; Thomas Wilke. Logic and automata: history and perspectives (PDF). Amsterdam University Press.  


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.